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Abstract

Vision—language—action (VLA) models have recently shown
promising performance on a variety of embodied tasks,
yet they still fall short in reliability and generalization,
especially when deployed across different embodiments
or real-world environments. In this work, we introduce
NORA-1. 5, a VLA model built from the pre-trained NORA
backbone by adding to it a flow-matching—based action ex-
pert. This architectural enhancement alone yields substan-
tial performance gains, enabling NORA-1 . 5 to outperform
NORA and several state-of-the-art VLA models across both
simulated and real-world benchmarks. To further improve
robustness and task success, we develop a set of reward
models for post-training VLA policies. Our rewards com-
bine (i) an action-conditioned world model (WM) that eval-
uates whether generated actions lead toward the desired
goal, and (ii) a deviation-from—ground-truth heuristic that
distinguishes good actions from poor ones. Using these re-
ward signals, we construct preference datasets and adapt
NORA-1.5 to target embodiments through direct prefer-
ence optimization (DPO). Extensive evaluations show that
reward-driven post-training consistently improves perfor-
mance in both simulation and real-robot settings, demon-
strating significant VLA model-reliability gains through
simple yet effective reward models. Our findings highlight
NORA-1.5 and reward-guided post-training as a viable
path toward more dependable embodied agents suitable for
real-world deployment.

1. Introduction

Recent advancements in Vision—Language—Action Models
(VLAs) have demonstrated remarkable performance across
a variety of simple embodied tasks, such as picking and
placing objects [5, 16, 19, 35, 43]. Despite this progress,
most existing approaches rely heavily on large-scale imita-
tion learning [33] from expert-collected cross-embodiment
action trajectories [11], followed by supervised fine-tuning
(SFT) on embodiment-specific data for downstream tasks.
However, SFT-based adaptation inherits a strong bias from
limited manually curated demonstrations, restricting the
model’s ability to fully generalize or improve beyond the
quality of expert data.

To enable more calibrated and scalable post-training,
we explore the use of direct preference optimization
(DPO) [37] by generating preference datasets from reward
models capable of ranking the quality of actions produced
by the VLA policy.

We introduce NORA-1.5, constructed by coupling a
flow-matching—based action expert with the pre-trained au-
toregressive VLA model NORA [16] through layer-wise
self-attention. ~We choose this architecture due to its

promise in achieving impressive performance at a better in-
ference speed as first proposed by Intelligence et al. [18].
While prior work suggested that flow-matching primarily
improves inference speed, its impact on policy performance
was not investigated. In contrast, we conduct a detailed
study and find that flow-matching—based action generation
consistently improves performance across multiple bench-
marks. We attribute this gain to a strong architectural syn-
ergy: the flow-matching expert leverages rich representa-
tions encoded by the autoregressive VLA, while the VLA
receives informative gradients from the expert, encourag-
ing it to plan coherent multi-step trajectories that the expert
can effectively realize. However, we also observe that the
flow-matching expert may underperform in low-data set-
tings, likely due to insufficient joint training with the VLA
backbone. Overall, NORA-1.5 achieves state-of-the-art
performance on simulated benchmarks such as SimplerEnv
and LIBERO, and its capabilities transfer well to real-world
robot experiments on a novel embodiment.

Recent robotics approaches [23] have attempted to ob-
tain reward signals by simulating action rollouts. However,
such pipelines are computationally expensive, slow to train,
and difficult to scale. To address this limitation, we explore
reward-driven post-training using lightweight yet effective
reward signals derived from compact action-conditioned
world models. In this formulation, rewards are estimated
by rolling out candidate action sequences through the world
model and assessing their ability to reach the goal. Since
reward modeling in robotics typically requires estimating
how well an action sequence achieves a desired outcome,
world models offer a natural mechanism: they directly pre-
dict future frames or their latent embeddings conditioned on
actions.

Motivated by this, we employ a 1.3B-parameter action-
conditioned world model, V-JEPA2-AC [2], as a goal-based
reward estimator. Yet because V-JEPA2-AC is adapted with
limited data, its predictions can be noisy. To mitigate this,
we incorporate a complementary heuristic reward that mea-
sures the distance between sampled actions and ground-
truth actions in the training data. These two reward com-
ponents serve distinct roles: the goal-based world model
captures diverse feasible trajectories, while the distance-
based heuristic helps counteract noise and provides a sta-
ble reference. Across benchmarks, we find that combin-
ing these lightweight reward formulations with DPO-based
preference tuning consistently improves downstream per-
formance. Once the reward mechanism is in place, it can be
applied in multiple ways—including preference optimiza-
tion (as done here) or reinforcement learning—providing a
scalable and data-efficient path for post-training VLAs.

This post-training paradigm defines an economical to
scale policy refinement of large Vision—Language—Action
(VLA) models. Rather than relying on manually-annotated



labels or extensive on-robot rollout execution, NORA-1.5
constructs learned evaluators—a world-model based pre-
dictor combined with geometric/heuristic checks—that
serve as reward proxies to rank model-generated trajecto-
ries to form preference pairs; these ranked pairs are then
consumed by Direct Preference Optimization (DPO). This
approach has three interlinked advantages. Firstly, it con-
verts policy improvement into a compute-bound process:
synthetic rollouts sampled from the VLA can be assessed
en masse by the learned evaluator, thereby post-training
throughput scales with available compute rather than sig-
nificantly longer physical robot time. Secondly, since DPO
optimizes from pairwise preferences rather than exact like-
lihoods or calibrated densities, the pipeline is naturally
compatible with flow-matching or diffusion-based action
heads that lack tractable or well-calibrated likelihoods; thus,
preference-based objectives avoid a key optimization bot-
tleneck for contemporary VLA architectures. Thirdly, the
learned evaluator provides a unifying rating function that
can harmonize heterogeneous corpora: when applied to a
corpus such as Open X-Embodiment (OXE), the evaluator
may consistently rank trajectories originating from dozens
of embodiments, sensors, and task specifications, enabling
the entire action-rich structure of OXE to be converted into
a massive preference dataset for DPO; the trained world
model could be a source of noise this approach. Over-
all, this enables a single, automated post-training stage that
leverages billions of diverse trajectories to produce reward-
aligned refinements that generalize across embodiments and
deployment conditions—i.e., a scope that meaningfully ex-
ceeds mere cross-embodiment adaptation.

In summary, our work makes the following key contri-
butions:

¢ Introducing NORA-1.5. We present NORA-1.5, a
VLA model built on a strong pre-trained autoregressive
VLA (NORA) by integrating a trainable flow-matching
action expert and jointly training them on the Open X-
Embodiment dataset. NORA-1 . 5 significantly outperforms
NORA and achieves state-of-the-art results across diverse
simulated benchmarks (SimplerEnv, LIBERO) and real-
world embodiments (Galaxea Al).

¢ Action-rewarding mechanisms through multiple
strategies. We propose a reward framework composed
of (i) goal-based rollouts using an action-conditioned
world model (V-JEPA2-AC), (ii) distance-based rewards
measuring deviation from ground-truth actions, and (iii)
subgoal-based scoring. These complementary signals pro-
vide robust and scalable criteria for ranking VLA-generated
actions and support DPO-based post-training.

¢ Comprehensive architectural analysis. We conduct a
detailed investigation of coupling a flow-matching expert
with an autoregressive VLA backbone. Our analysis reveals
strong mutual benefits: the expert leverages rich VLA en-

codings, while the VLA improves its trajectory-level plan-
ning through feedback from the expert. We also identify
data-regime—dependent behaviors.

* Advancing scalable post-training of VLAs. We demon-
strate that simple reward models combined with DPO-based
preference optimization yield consistent performance gains
across both simulation and real robots, establishing a scal-
able and data-efficient direction for post-training VLA mod-
els.

2. Preliminaries
2.1. NORA

NORA [I5] is a 3B-parameter auto-regressive Vision-
Language-Action (VLA) model obtained by fine-tuning a
strong vision language model (VLM) backbone Qwen-2.5-
VL-3B [3] on the Open X-Embodiment dataset [11] to pre-
dict action tokens. Using such a strong VLM backbone
imbues NORA with robust world knowledge with multi-
modal reasoning, representation learning, and instruction-
following capabilities, paramount for natural language-
and visuals-driven robotic operations. On the other hand,
FAST+ tokenizer [31] is used for action representation, ow-
ing to its efficient discretization of action sequences and
proven efficacy [17] across a wide range of action spaces
involving single-arm, bi-manual, and mobile robot tasks.

2.2. V-JEPA-2-AC

V-JEPA-2-AC [1] is based on pre-trained V-JEPA-2—a
joint embedding architecture model pre-trained by predict-
ing embeddings of the sequence of visual frames from their
masked versions. V-JEPA-2-AC uses V-JEPA2 as vision en-
coder and adds an additional predictor network on top to
predict the future frame embeddings, given current frame(s)
and a sequence of actions. This model serves as the action-
conditioned world model to post-train the VLA models.

3.NORA-1.5

NORA-1.5 uses NORA [15] as its VLA/VLM backbone
due to its solid vision-language and instruction following
capabilities derived from its VLM backbone and imitation
learning-based training on a large volume and variety of ac-
tion trajectories (see Sec. 2.1). However, given the perfor-
mance considerations and efficacy of flow-matching action
heads [17], we add a flow-matching-based dedicated action
expert that accepts input from the NORA backbone to gen-
erate the action sequences directly. On the other hand, to
guide the action generation with a world model—V-JEPA-
2 [1] in our experiments—, we align the action expert out-
puts with direct preference optimization (DPO) [37] using
the difference between the action-conditioned world model
output and the ground-truth frames as a proxy reward. The
alignment approach is depicted in Fig. 1.
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Figure 1. Training pipeline of NORA-1 .5 where firstly a VLA model is pre-trained through imitation learning and subsequently a prefer-
ence dataset of the actions is created for preference optimization. WM stands for WM-guided goal-based reward (Eq. (6)) and GTA stands

for the reward based on ground-truth action (Eq. (7)).

3.1. Architecture

To circumvent to the often slower auto-regressive action de-
coding of NORA, we use a separate action expert A that di-
rectly regresses the action sequence a;.;+ y within a horizon
of length IV, based on the joint natural language instruction
I and visual observation o; encoding from NORA (VL):

KVL,t7VV£,t = V‘Ca(otaI)) (1)
are+N = Ao(Kver, Vo), 2

where Ky, and Vy . ; are the keys and values from the
transformer layers of VL. In NORA-1 . 5, we use the exact
same horizon length as NORA-Long, i.e N = 5.

Input Encoding with NORA (V£). Being based on a
strong VLM Qwen-2.5-VL-3B allows NORA to have a
strong foundation in joint visual-linguistic understanding.
Simultaneously, its imitation learning phase on a large vol-
ume of diverse trajectories imbued NORA with action gen-
eration abilities for a large variety of robots. The latter be-
ing an advantage over the typical VLMs makes NORA a
good choice for robotics-relevant vision-language encoding
to jointly encode natural language instruction and visual ob-
servation. To this end, the key-value pairs (see Eq. (1)) of

the constituent transformer layers of NORA are used to con-
dition the action expert.

Action Expert (A). The action expert is defined as a flow-
matching head that regresses the action sequence of horizon
N, conditioned on key-value pairs of VL. Given the action
sequence a;..4n, the noisy action sequence is defined as
alyn = (1=7)as.sy N +7Tag where 7 is the flow matching
timestep and ag ~ N (0, 1). The action expert A directly re-
gresses the ground-truth velocity v = ag — a4 v against
the predicted velocity by minimizing the flow matching
loss:

Lrm = E'Uy(l;,—:t+N || A(az:t+Na KVﬁ,tv VVL»t) v ||2 ®)

The vector field regressor A(af.,, n, Kve,e, Vvc,e) is pa-
rameterized as a stacked transformer network, architec-
turally identical to NORA:

2D — Tr(l)(Q _ Wg)x(l),K _ K\(}l)ﬁ ® Wl((l)z(l),
V=V ewa0), @)

where [ is the layer index, 20 = a,, T'r is a transformer
layer, and @), K, and V are the query, key, and value inputs



to the multi-headed attention therein; the head indices are
omitted.

3.2. Reward Modeling for Post-training VLAs

In LLM research, significant gains in System-II level intel-
ligence and task performance have been achieved through
extensive post-training using reinforcement learning. The
key idea is that the model explores the solution space by
generating multiple rollouts. A reward model then evalu-
ates these rollouts based on criteria such as task completion,
efficiency, and optimality. The reward signals are used to
update the policy, enabling the model to gradually improve
its action selection and favor strategies that achieve higher
rewards. This process effectively combines exploration of
possible actions with guided learning from feedback, allow-
ing the model to discover increasingly effective behaviors.
Extending this paradigm to Visual-Language-Action (VLA)
models faces a fundamental challenge: how can we define
and provide reward signals for these models? Training a
reward model requires data where each action is evaluated
based on its affinity to complete the goal successfully.

A naive strategy would be to sample IV action sequences
from a VLA model, execute them either in simulation or
on a physical robot, and then construct hand-crafted re-
ward signals based on the observed outcomes. These col-
lected trajectories could then be used to fit reward or value
functions capable of evaluating newly generated rollouts
and assigning corresponding scores, thereby forming a con-
ventional Reinforcement Learning (RL) pipeline. In prac-
tice, however, this approach presupposes access to highly
accurate, fast, and embodiment-specific simulators—or al-
ternatively, to substantial real-robot infrastructure—both of
which are costly and often infeasible at scale. As a sim-
pler surrogate, one might instead define rewards by measur-
ing the distance between model-generated actions and their
corresponding ground-truth actions; however, such heuris-
tics inherit the limitations of the underlying demonstrations.
In tasks for which multiple valid trajectories exist, distance-
based rewards can bias the learner toward a single demon-
stration path, thereby creating local optima and discourag-
ing exploration of alternative successful behaviors. More-
over, because these rewards provide no guidance once the
policy deviates from the demonstration manifold, they may
lead to poor failure recovery and can cause the policy to
collapse in off-distribution states encountered during evalu-
ation.

Recent advances in world models and video generative
models offer a promising alternative. These models can
serve as implicit reward estimators by predicting the conse-
quences of actions and evaluating whether desired subgoals
are achieved. Leveraging such learned models as reward
functions could enable scalable post-training of VLA poli-
cies without the need for fully engineered simulators, pro-

viding a practical path forward for reinforcement learning
in embodied settings.

Improving the Action Expert through Rewards. Given
N rollouts from the action expert, we leverage several tech-
niques to compute rewards as explained in the following
section.

Once the reward model is trained, preference optimiza-
tion techniques, such as Direct Preference Optimization
(DPO) [37], RL, and GRPO (Group Reward Preference Op-
timization) [39], can be adopted for improving the action
expert. In our case, we use DPO.

Reward Designs. Our reward model has two compo-
nents: (i) WM-guided goal-based reward and (ii) action-
based reward. WM-guided goal-based reward is designed to
quantify the alignment of the generated actions to the spec-
ified goal. For this, action-conditioned world models can
be used to predict the resulting future states. These states
can then be compared to the ground-truth goal states—we
experimented with both final goal, denoted as WM (endgoal)
reward, and immediate subgoal states, denoted as WM (sub-
goal) reward (see Sec. 4.5)—using a suitable metric to ob-
tain the reward signal for the action expert. The immedi-
ate subgoal states could guide the model toward immedi-
ate short-term goals, as opposed to the end-goal state that
could guide toward the final long-term goal. Following this
hypothesis, to estimate the quality of the actions in terms
of achieving the end-goal or subgoal, we train an action
conditioned world dynamics model W that is based on pre-
trained V-JEPA2' —trained to encode images and sequence
of images. Inspired by Assran et al. [1], we train a predictor
transformer model (Fy) that accepts the current observation
o encoded by V-JEPA2 (7) and an action sequence a.;+ N
as input, to regress the embedding of the next observation
0¢+ N, as defined in Eq. (5).

j(0t+N) = We(Ot, at:t+N) = Pe(j(ot), at:t+N)a (%)

Ry(at+n,0t) = —|[T(0g) = We(ot, are+n)l[1,  (6)
g € {endgoal, subgoal-t},

Ralari+n) = —|lagpn — ar Nl @)

Riot(ar:44n,0¢) = Rg(at+n,0¢) + 0.5Rq(ar14n) (8)

The WM-guided goal-based reward, as defined in Eq. (6),
is the difference between the final goal image Oenggoar OF the
immediate subgoal image Ogupgoal-+ and the world model-
estimated resultant image of the candidate action a;.iy .
This difference could indicate how close an action a; is to
take the task to the end-goal or the immediate subgoal. The
ground-truth subgoal image Osubgoal-+ at time ¢ is chosen as
the ¢t + IN-th available frame 0, .

lhttps ://dl.fbaipublicfiles.com/vijepa2/vitg.pt
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On the other hand, action-based reward [20] (referred to
as GTA in the experimental results), as defined in Eq. (7),
quantifies how close an action a4+ is to the gold action
a;.y, n- The total reward R combines these two compo-
nents, where the action-based reward is given half as much
weight as the WM-guided goal-based reward. This combi-
nation could mitigate the noisiness of the WM-guided goal-
based reward inherited from the action-conditioned world
model WV that is trained on limited data and may not gener-
alize well to all scenarios. On the other hand, action-based
reward can be too constrained, as the ground-truth trajectory
may not be unique, and in such cases, goal-driven reward
may work well.

The reward model used in this work provides dense,
stepwise evaluations which permit the model to rank sam-
pled candidate actions at each timestep. Concretely, given
a fixed task specification and observation s;, the model
assigns comparative scores to different candidate actions
{ag:lt) AN aﬁﬁ?_ ~J, enabling the VLA to discriminate
the relative quality of these actions and thereby encourag-
ing deeper step-level exploration during Direct Preference
Optimization (DPO). Because the ranking is performed at
the action level, the policy can explore diverse local deci-
sion branches and propagate preference information that is
localized in time. This reward model can also be integrated
directly into conventional RL objectives (e.g., as per-step
rewards 7, or as an auxiliary critic), enabling hybrid train-
ing regimes.

By contrast, an alternative is to collect data where we
use sparse per-step rewards derived from the final trajectory
outcome, use that to train a value function, and finally to
perform RL through learned value functions; while repeated
trajectory-level rollouts also promote exploration, they gen-
erally yield shallower exploration because credit is assigned
over whole trajectories rather than to individual time steps.

Preference Dataset Construction. We construct prefer-
ence datasets Dyoq and Dy of (winner, loser) ac-
tion preference pairs (a}};,, v, al,, ) based on rewards de-
fined in Egs. (7) and (8), respectively, where am’fN ~
VLAg(o, 1), VLA = Ay o VL, and R(a}, y,") >
R(aﬁt LN -). Given the current state, instruction, and these
pairs, we use Eq. (6), Eq. (7), and Eq. (8) to rank the actions
given an observation and construct the preference pairs ac-
cordingly.

3.3. Training

There are two major training stages:

i. Action-Expert Training. The action expert parameters
are randomly initialized and subsequently jointly trained
with the VLA-backbone (NORA) parameters with a com-
bined flow-matching loss on the action expert output and
cross-entropy loss on the FAST+ output tokens of NORA.

ii. Reward-guided Post-Training. We align the action
expert-generated action sequences with DPO objective

Lororm = = Er44(0,1),(a¥, .0k, ys00,1)~D.

loga( — B[HA(atVKJFMOt,LT%e) - ”XVHS
Winning loss

— | A(aisns 00, 1,7:0) — o713

Losing loss
- ”A(am—i—N7 Ot, Iv 75 er) - UKV”%
Winning reference loss
+ Ak 00 1LTi0) = vEI3]). - ©

Losing reference loss

On the other hand, we also align the FAST+ action out-
puts from the VLA decoder head with the DPO objective
by Rafailov et al. [37]. The evaluations of FAST+ outputs
are indicated with a ‘-FAST’ suffix. The DPO-based post-
training is applied to the SFT models i.e., after fine-tuning
the VLA on target embodiment’s supervised data.

4. Experiments

4.1. Baselines

As baselines, we use existing well known VLA models in-
cluding autoregressive VLAs such as Spatial VLA [35], RT-
1 [7], MolmoAct [21], Emma-X [41], NORA [15], and
OpenVLA [19] and diffusion or flow-matching based such
as mg [5] etc.

4.2. Benchmarks and Evaluation Settings

The VLA models are evaluated across both simulated
and real-world settings using LIBERO, SimplerEnv, and a
Galaxea Al robotic arm. The LIBERO benchmark com-
prises four subsets—Spatial, Object, Goal, and Long—each
evaluated over 500 episodes, with results averaged across
three runs using different seeds; fine-tuning is performed
by combining data from all four subsets after removing no-
op actions. SimplerEnv focuses on closing the simulation—
reality gap with optimized PD parameters and evaluates
four tasks (pick coke can, move object near object, open
drawer, close drawer) under two protocols: visual matching
and variant aggregation, covering over 1,000 episodes in to-
tal; results are averaged over two runs. For real-world cross-
embodiment evaluation, we use the Galaxea Al robot—
absent from the pretraining dataset—and collect 1,000 tele-
operated pick-and-place episodes with randomized object
placement across nine unique tasks (e.g., “Put apple on the
plate”). Evaluation is conducted on nine tasks grouped into
three categories (seen tasks, unseen-object—seen-distractor
tasks, and unseen-instruction—seen-distractor tasks), each



repeated for 10 trials using fixed starting positions consis-
tent across baselines. Simulation benchmarks report binary
success rates (1 if the task is completed, else 0), while real-
robot evaluations report both success rate (Succ.?) and par-
tial success rate (Part. Succ.T) to capture finer-grained dif-
ferences in performance i.e., if the robot successfully grasps
the correct object, we reward it with one point. Addition-
ally, we also report the occurrences of grasping the distrac-
tors (Dist.}) in the environment where a lower score is pre-
ferred.

4.3. Performance of NORA-1.5

As evident in Tabs. 1 to 3, NORA-1.5 generally outper-
forms all the baselines as analyzed below.

SimplerEnv. The results in Tab. 1 clearly show a supe-
riority of NORA-1.5 in visual matching evaluation. Par-
ticularly on pick coke can and move near tasks, zero-shot
NORA-1.5 outperform all the baseline zero-shot mod-
els by a wide margin of 4.6% and 10.7%, respectively.
The performance advantage on these two tasks still holds
for the fine-tuned variant of NORA-1.5 by 6.8% and
0.8%, respectively, against fine-tuned Spatial VLA. How-
ever, for open/close drawer task this performance gain is
not present. Magma far outperforms all the models in this
regard, but its overall performance is far below even zero-
shot NORA-1.5. This could be attributed to its limited
adaptation to such dragging and pushing actions that are
relatively less prevalent in the pre-training dataset than pick
and place actions—based on a keyword search on the task
descriptions of Open X Embodiment pre-training dataset.
However, the performance of fine-tuned NORA-1 . 5 on this
task is still better by 4.8% than the generally next-most ca-
pable fine-tuned model of Spatial VLA. For visual matching,
overall zero-shot and fine-tuned variants of NORA-1 . 5 sur-
pass the other equivalent next-best models by a wide 6.4%
and 4.2%, respectively.

For variant aggregation setting, post-DPO NORA-1.5
performs comparably to the best model MolmoAct. How-
ever, the minute performance advantage of MolmoAct
comes from a performance large performance advantage on
drawer open/close tasks. Whereas, it has huge underperfor-
mance on pick coke and move next tasks. Thus, NORA-1.5
could be considered more robust across tasks and variable
visual settings.

NORA vs. NORA-1.5. We observe that NORA-1.5
consistently outperforms NORA across all benchmarks.
According to Intelligence et al. [17], flow matching in 7 5
was primarily introduced to improve inference speed rather
than performance. In contrast, in NORA-1.5, coupling a
flow-matching-based action expert with a pre-trained VLM-
based autoregressive VLA leads to noticeable performance
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Figure 2. Comparing FAST+ with flow-matching.

gains over the latter. We attribute this to the architec-
tural design, where the flow-matching-based action expert
and the autoregressive pre-trained VLA mutually benefit
from each other. The flow-matching expert leverages the
VLA’s rich representations—such as encoded observations,
instructions, and overall plans—required for generating co-
herent actions. At the same time, the autoregressive VLA
benefits from gradient feedback propagated through the ac-
tion expert, enabling more effective learning such as im-
proving the overall abstract plan for action expert to gener-
ate actions. In this way, the VLA is encouraged to plan the
entire action trajectory that the expert subsequently lever-
ages to generate actions. As shown in Fig. 2, NORA-1 . 5-
FAST further surpasses NORA in both zero-shot and fine-
tuned evaluations.

LIBERO. Tab. 2 shows that the performance gain by
DPO over the NORA-1. 5 baselines is generally quite con-
sistent and wide, except on LIBERO-Object evaluation
tasks. This could be attributed to the limited variability
of the object dimensions in these tasks, while the spatial
setting and goal remain fixed. This lack of variability, as
compared to the other tasks that differ in goals and spatial
relationships, may have made these tasks easier. Thus, sig-
nificant improvements could be harder to achieve. In fact,
all the remaining models are not far behind the top models
on these tasks, as compared to the remaining tasks. Over-
all, NORA-1.5 outperforms recent state-of-the-art models
such as 7.

Performance with Limited Real-life Robot Training
Data. Tab. 3 shows the performance of 7y, NORA, and
NORA-1.5 on the Galaxea Al robotic arm. Across all ex-
perimental settings, NORA-1.5 outperforms these strong
baselines by 13% to 46%. The improvement is larger for
tasks with unseen distractors, suggesting the robustness
of NORA-1.5. Although we jointly optimize the flow-
matching and autoregressive losses when fine-tuning the



Table 1. Performance comparison across models on SimplerEnv evaluation. The baseline results are taken from Lee et al. [21]. VM:=Visual
Matching, VA:=Variant Aggregation, PCC:=Pick Coke Can, MN:=Move Near, DR:=Open/Close Drawer.

Model Visual Matching Variant Aggregation
Pick Coke Can Move Near Open/Close Drawer ~ Avg  Pick Coke Can Move Near Open/Close Drawer ~ Avg

HPT 56.0% 60.0% 24.0% 46.0% — — — —
TraceVLA 28.0% 53.7% 57.0% 42.0% 60.0% 56.4% 31.0% 45.0%
RT-1-X 56.7% 31.7% 59.7% 53.4% 49.0% 32.3% 29.4% 39.6%
RT-2-X 78.7% 77.9% 25.0% 60.7% 82.3% 79.2% 35.3% 64.3%
Octo-Base 17.0% 42% 22.7% 16.8% 0.6% 3.1% 1.1% 1.1%
OpenVLA 16.3% 46.2% 35.6% 27.7% 54.5% 47.7% 17.7% 39.8%
RoboVLM (zero-shot) 72.7% 66.3% 26.8% 56.3% 68.3% 56.0% 8.5% 46.3%
RoboVLM (fine-tuned) 71.3% 61.7% 43.5% 63.4% 75.6% 60.0% 10.6% 51.3%
Emma-X 2.3% 3.3% 18.3% 8.0% 5.3% 7.3% 20.5% 11.0%
Magma 56.0% 65.4% 83.7% 68.4% 53.4% 65.7% 68.8% 62.6%
mo (fine-tuned) 72.7% 65.3% 38.3% 58.7% 75.2% 63.7% 25.6% 54.8%
mo-FAST (fine-tuned) 75.3% 67.5% 42.9% 61.9% 77.6% 68.2% 31.3% 59.0%
GROOT N1.5 (fine-tuned) 69.3% 68.7% 35.8% 52.4% 46.7% 62.9% 17.5% 43.7%
Spatial VLA (zero-shot) 81.0% 69.6% 59.3% 70.0% 89.5% 71.7% 36.2% 65.8%
Spatial VLA (fine-tuned) 86.0% 77.9% 57.4% 73.7% 88.0% 72.7% 41.8% 67.5%
MolmoAct (zero-shot) 71.3% 73.8% 66.5% 70.5% 57.8% 43.8% 76.7% 59.3%
MolmoAct (fine-tuned) 77.7% 77.1% 60.0% 71.6% 76.1% 61.3% 78.8% 72.1%
NORA-Long (zero-shot) 74.2% 75.0% 31.7% 60.3% 36.0% 73.0% 16.9% 42.0%
NORA-1.5-FAST (zero-shot) 79.5% 90.9% 51.5% 74.0% 67.3% 71.6% 24.0% 54.3%
NORA-1.5-FAST (fine-tuned) 88.6% 86.4% 41.2% 72.1% 85.2% 85.2% 31.7% 67.4%
NORA-1.5 (zero-shot) 85.6% 88.6% 56.7% 76.9% 73.0% 80.1% 26.2% 59.7%
NORA-1.5 (fine-tuned) 92.8% 78.7% 62.2% 77.9% 95.0% 75.7% 41.5% 70.7%
NORA-1.5 (DPO) 94.0% 88.0% 66.4% 82.8% 92.6% 79.0% 44.1% 71.9%
A from DPO 1.2% 9.3% 4.2% 4.9% -2.4% 3.3% 2.6% 1.2%

Table 2. Comparison of different baselines on spatial, object, goal,
and long-horizon evaluation in LIBERO. The baseline results are
taken from Lee et al. [21]. Each subtask is evaluated across three
random seed.

Baseline Spatial Object Goal Long Avg

TraceVLA 84.6% 852% 15.1% 54.1% 14.8%
Octo-Base 789%  85.7% 84.6% S51.1% 751%
OpenVLA 84.7% 88.4% 192% 53.7% 76.5%
Spatial VLA 882% 89.9% 78.6% 55.5% 18.1%
CoT-VLA 87.5% 91.6% 87.6% 69.0% 83.9%
WorldVLA 87.6% 962% 834% 60.0% 79.1%
mo-FAST 96.4%  96.8% 88.6% 602% 85.5%
o 96.8% 98.8% 958% 852% 94.2%
ThinkAct 883% 91.4% 87.1% 70.9% 84.4%
MolmoAct-7B-D 87.0% 954% 87.6% 71.2% 86.6%
NORA 85.6% 89.4% 80.0% 63.0% 79.5%
NORA-Long 922%  954% 89.4% 74.6% 87.9%
NORA-1.5 973%  964% 94.5% 89.6% 94.5%
NORA-1.5(DPO) 98.0% 96.0% 954% 90.5% 95.0%
A from DPO 0.7% -0.4% 0.9% 1.0% 0.6%

model on Galaxea A1 data, we observe that flow-matching-
based action generation performs worse than autoregres-
sive decoding. This differs from our observations of Sim-
plerEnv and LIBERO (Fig. 2), where flow-matching-based
generation performs substantially better. We believe this
difference arises from the smaller real-robot dataset (50K
frames) as compared to SimplerEnv (4M frames). Since
unlike 7 our action expert lacks extensive flow-matching

pre-training, it would likely require more data to effectively
adapt than the autoregressive VLM backbone. This could
explain the performance advantage of flow-matching-based
generation on SimplerEnv and LIBERO, where larger fine-
tuning datasets are available.

4.4. Impact of DPO-based Post-training

We study the impact of three reward formulations: an
action-based reward (Eq. (7)), WM-guided goal-based re-
ward (Eq. (6)), and a linear combination of these two
(Eq. (8)). We perform these experiments primarily on the
SimplerEnv and LIBERO simulation tasks.

SimplerEnv. The results in Tab. 4 suggest that different
reward strategies utilized for DPO generally outperform the
SFT baseline for both Visual Matching and Variant Ag-
gregation. The WM-guided goal-based reward proved to
be an exception, leading to a performance degradation on
the “Move Near” task for both visual matching and variant
aggregation. This is likely because a purely goal-directed
guidance does not account for the implicit safety constraints
of the task. Based on the success criteria of “Move Near” in
SimplerEnv, the robot is required to avoid obstacles while
completing the task. Notably, in Tab. 4, the hybrid WM +
GTA model achieves the best overall performance of 82.8%
on Visual matching and a significant increase on the “Move
Near” subtask, suggesting that by adding ground truth ac-
tion to the goal-based reward,



Table 3. Experimental results of NORA-1 .5 and baselines on nine real-world tasks with Galaxea A1 robotic arm. Task Format indicates
the types of the physical objects—seen (S) vs unseen (U)—and how they are related in the task. The red-inked objects are distractors (Dist.)
in the setup. Succ. := % success rate.

Task Format (o) NORA NORA-1.5-FAST
Target(s) [Distractor] Task (1) (3.3B) (3B) (3.3B)
Part. Part. Part.
Succ.t  Dist. | Succ. T Succ.t Dist. | Succ. T  Succ.f Dist. | Succ. T
PutUinU 7y : Put eggplant in bowl 90% - 80% 90% - 90% 100% - 100%
79 : Put apple in plate 70% - 30% 100% - 80% 100% - 90%
73 : Put mango in basket 90% - 80% 80% - 70% 90% - 90 %
PutUin s [S] 74 : Put strawberry in plate [apple] 0% 90% 0% 70% 0% 70% 70% 10% 70%
75 : Put grape in plate [eggplant] 0% 90% 0% 70% 20% 50% 80% 20% 80%
76 : Put orange in plate [banana] 0% 100% 0% 30% 20% 40% 70% 30% 60%
Move U to U [S] 77 : Move strawberry to banana [apple] 50% 50% 10% 60% 20% 20% 60% 10% 40%
Tg : Move orange to banana [apple] 50% 30% 10% 80% 0% 50% 70% 20% 60%
To : Move cube to orange [banana] 50% 50% 20% 80% 20% 60% T70% 0% 50%
Average 44.44% 68.33% 2555% 733% 13.3% 58.88% 78.88% 15.00% 71.11%

Table 4. Ablation study on the proxy reward for DPO of
NORA-1.5 through SimplerEnv evaluation. WM stands for world
model-guided goal-based reward (Eq. (6)) and GTA stands for
the reward based on ground-truth action (Eq. (7)). VM:=Visual
Matching, VA:=Variant Aggregation, PCC:=Pick Coke Can,
MN:=Move Near, DR:=Open/Close Drawer.

V™M VA
PCC MN DR Avg PCC MN DR Avg

928% 18.7% 622% T19% 95.0% 15.7% 41.5% 70.7%
Reward Techniques for DPO

739% 61.6% 764% 95.1%
81.8% 58.8% 18.7% 95.3%
86.0% 64.4% 81.2% 94.6%
88.0% 664% 82.8% 92.6%
83.0% 61.6% 79.0% 93.4%

Reward

SFT (no reward)

74.6%
80.7%
80.1%
79.0%
80.1%

47.7%
40.5%
429 %
44.1%
45.4%

72.5%
722%
72.5%
71.9%
73.0%

WM (endgoal) 93.6%
WM (subgoal) 95.5%
GTA 92.8%
WM (endgoal) + GTA  94.0%
WM (subgoal) + GTA  92.4%

LIBERO. The performance on LIBERO also improves
with DPO, although the gains are smaller as compared to
SimplerEnv. This is likely because the SFT model already
performs strongly on LIBERO, leaving limited room for
further improvement. Among the LIBERO benchmarks, the
most challenging task is LIBERO-Long, where we observe
consistent performance gains of 1% to 1.7% across all re-
ward modeling techniques.

Galaxea Al Robotic Arm. After observing marginal
to substantial improvements from our action-rewarding
strategies and DPO across simulation benchmarks such as
LIBERO and SimplerEnv, we next evaluate whether these
gains carry over to real-robot settings. Real-world exper-
iments also allow us to understand more concretely how
DPO-based post-training benefits VLA models. To this end,
we extend the “Put U in S [S]” task suite by adding four
more variants with additional distractors to increase task
difficulty.

As shown in Tab. 5, across all thirteen tasks, the DPO-
trained NORA-1.5 achieves a notable 13% performance
improvement. Specifically, correct-object grasping accu-

racy increases by 11%, while unintended grasps of distrac-
tors decrease by 4%. While DPO marginally improves the
performance for in-domain or seen objects/tasks, we see a
larger performance improvement of 15%-16% on unseen
tasks and objects. These trends indicate that DPO con-
tributes primarily in two ways: (1) enhancing the affordance
and reliability of the grasping action, and (2) improving the
model’s ability to focus on the intended target object.

Fig. 3 further illustrates these effects. With reward-
driven DPO post-training, the gripper trajectory becomes
more consistent and well-formed, whereas the non-DPO
model exhibits more fixations and zig-zag motions. Con-
sequently, while NORA-1.5 with DPO requires only 7.0
action chunks on average to grasp the target, NORA-1.5
without DPO takes 9.7 action chunks, indicating that the
latter struggles to execute smooth and efficient grasps—an
issue mitigated by DPO post-training. The results also show
that DPO helps reduce the likelihood of the robot acciden-
tally picking up distractor objects.

4.5. Ablations

To determine the individual contribution of the various re-
ward elements—WM-guided goal-based reward (Eq. (6))
and ground-truth action-based reward (Eq. (7))—, we also
curate preference datasets for SimplerEnv and LIBERO
with the individual elementary rewards and apply DPO to
the pre-trained NORA-1 . 5. Evaluating the elementary re-
wards in SimplerEnv, as shown in Tab. 4, reveals a gen-
eral superiority of the combined reward (Eq. (8)) for vi-
sual matching. Interestingly, the end-goal-based reward WM
(endgoal) causes the performance on move near and drawer
open/close tasks to drop below SFT. On the other hand, the
subgoal-based reward WM (subgoal) is overall 1.7% better
than WM (endgoal) and overall beats the SFT baseline by a
small margin. Specifically, WM (subgoal) surpasses the SFT
baseline on move near task by 3.1%, whereas WM (endgoal)



Table 5. Comparing NORA-1 . 5-FAST w/ and w/o DPO. Metrics shown separately as Correct/Dist./Succ. The newly introduced tasks are
: T10 : Put mango in plate [apple, grape], 711 : Put mango in plate [apple, grape, orange], 712 : Put orange in plate [apple, grape], 713 : Put
orange in plate [apple, grape, mango]. Remaining tasks can be found in Tab. 3.

Format Reward Method for DPO
Target(s) [Dist] 2% () NoRa-1.5-FAST w/ WM (subgoal)+GTA  w/ WM (endgoal)+GTA w/ GTA
Part. Part. Part. Part.
Succ.t Distl Succ.? Succ.? Dist.] Succ.t Succ.t Dist.] Succ.t Succ.t Dist] Succ.t
PutUinU T 100 - 100 100 - 100 90 - 90 100 - 100
To 100 - 90 100 - 100 100 - 100 90 - 90
T3 90 - 90 90 - 90 90 - 90 90 - 90
Put Uin S [S] T4 70 10 70 70 0 70 70 0 70 70 0 70
Ts 80 20 80 80 10 80 90 0 70 80 10 60
T6 70 30 60 90 0 80 90 0 80 70 0 70
T10 80 10 70 90 10 90 70 10 70 90 0 70
Ti1 40 20 10 50 50 30 40 40 40 50 40 10
Ti2 60 10 10 80 10 40 50 0 10 40 30 0
Ti3 50 20 10 80 20 30 30 20 10 50 0 0
MoveUto U [S] 77 60 0 40 80 10 70 80 10 60 80 10 70
T8 70 20 50 100 0 70 90 0 60 70 20 60
Ty 70 20 60 80 10 60 60 20 50 80 20 60
Average 7230 16.00 5692 83.84 12.00 70.00 73.07 1000 6153 73.84 13 57.69
(Improvement) 11.54 400 13.08 0.77 6.00 4.61 1.54 3.00 0.77
Average (Unseen) 65.00 16.00 46.00 80.00 12.00 62.00 67.00 10.00 52.00 68.00 13.00 47.00
(Improvement) 15.00 4.00 16.08 2.00 6.00 6.00 3.00 3.00 1.00
Table 6. Ablation study on the proxy reward for DPO of

Strokes: 40 Strokes: 8

(a) NORA-1.5 without DPO. The
gripper trajectory exhibits frequent

(b) NORA-1 .5 with reward-driven
DPO post-training.  The gripper

fixations and zig-zag motions, often
resulting in failed grasps and grasp
attempts toward distractor objects.

trajectory becomes smoother and
more consistent, with fewer correc-
tive strokes and more reliable target

grasps.

Figure 3. Effect of DPO post-training on real-robot gripper trajec-
tories for the Galaxea A1 arm. Compared to the non-DPO baseline
(a), the DPO-trained NORA-1.5 (b) executes smoother trajecto-
ries with fewer strokes, aligning with the reduced number of action
chunks and improved grasp success reported in Tab. 5.

lags behind by 4.8%. This could be indicative of the noisi-
ness of the signal from the world model, where the guidance
of the final goal image is noisier than the immediate subgoal
images due to shaky long-term dependency modeling.

The ground-truth action-based reward (GT2) is generally
superior to all other elementary rewards for visual match-

NORA-1.5 through spatial, object, goal, and long-horizon eval-
uation in LIBERO. WM stands for world model-guided goal-based
reward (Eq. (6)) and GTA stands for the reward based on ground-
truth action (Eq. (7)).

Reward Spatial Object Goal Long Avg
SFT (no reward) 973% 964% 94.5% 89.6% 94.5%
Reward Techniques for DPO
WM (endgoal) 98.0% 96.0% 954% 90.5% 95.0%
GTA 983% 959% 94.7% 90.7% 94.9%
WM (endgoal) + GTA  97.9%  959% 94.1% 91.3% 94.8%

ing. This reward might teach the model to follow the most
straightforward trajectory to achieve the goal, achieving su-
perior results. However, for pick coke can task, this reward
fails to surpass the SFT baseline and falls behind the other
two elementary goal-based rewards. This may indicate the
drawback of such a straightforward approach, which may
induce certain biases in the model that may not work out in
very specific cases.

For the evaluation with variant aggregation, the overall
performance of all the elementary rewards are in the same
ballpark. WM (subgoal) beats the other two elementary re-
wards on pick coke can and move next tasks by a small
margin. In fact, all these elementary rewards beat the com-
bined reward WM (endgoal) + GTA across all the tasks, but
the overall performance is very comparable. Interestingly,



the WM (subgoal) + GTA combination shows the most sta-
ble performance under this setting by outperforming all on
average despite not being the best at any individual task.
This may underscore the robustness of short-term subgoal
modeling to the changing visuals.

For real-world Galaxea Al-based experiments (Tab. 5),
both the WM (subgoal)+GTA and WM (endgoal)+GTA reward
methods improve performance over the SFT model. How-
ever, WM (subgoal)+GTA reward consistently yields stronger
gains across all metrics—including grasping the correct ob-
ject, avoiding distractors, and overall task completion. A
plausible explanation is the presence of unseen objects and
varying environmental conditions in the real-robot setup.
In such settings, localized guidance from subgoal rewards
may offer a more reliable and less noisy training signal than
endgoal-based rewards. We also observe that GTA rewards
offer limited benefits for real robots. In fact, for most tasks
in the “Put U in S” category—including all newly intro-
duced challenging tasks—its performance is worse than the
baseline. This reinforces our assumption that, in real-world
environments, multiple trajectories can successfully accom-
plish the same task. As a result, forcing the model to con-
sistently follow a single labeled trajectory may introduce
unnecessary noise into the robot’s behavior when operating
in unseen scenarios. By combining subgoal/goal infor-
mation with GTA to construct the training dataset, we pro-
vide additional contextual signals that help guide the robot
toward selecting an appropriate trajectory to complete the
task.

For LIBERO, Tab. 6 shows that the overall performance
gain over SFT by both elementary and combined reward is
quite minute. This could be ascribed to the diminished gain
potential for LIBERO due to already high performance of
the SFT baseline.

5. Conclusion

Increasing research and commercial interest in VLA mod-
els call for effective adaptation of these models to a wide-
range of embodiments/robots. This work shows that prefer-
ence optimization-based post-training improves adaptation
of NORA-1 . 5 for both real world and simulation, given ap-
propriate reward modeling. The experiments and analyses
substantiate that our world model-driven goal- and action-
based reward is quite potent proxy reward for DPO of our
NORA-1. 5, resulting in significant performance gains. Our
real-world evaluation also highlight the performance ad-
vantage of NORA-1.5 over the state-of-the-art open VLA
model 7y. We hope this paper provides a sturdy foundation
for the future research on post-training VLA models and for
embodied Al as a whole.
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A. Evaluation Settings and Metrics

The comparative evaluation of our VLA model is performed
under both real-world and simulated settings. On one hand,
Galaxea A1 robotic arm is chosen as the embodiment for the
real-world evaluation. On the other hand, LIBERO [27] and
SimplerEnv [24] simulated benchmarks are used to evaluate
the VLA models under a diverse range of settings.

LIBERO [27] simulated benchmark comprising four sub-
sets to test generalization across spatial layouts (LIBERO-
Spatial), objects (LIBERO-Object), task goals (LIBERO-
Goal), and long horizon tasks (LIBERO-Long). We fol-
lowed the approaches of Kim et al. [19] and purged all the
no-op actions during fine-tuning. For fine-tuning, we com-
bined the data from four distinct subsets to train a single
model. For evaluation, each of the four corresponding tasks
was evaluated across 500 episodes. We report the average
performance over three runs for each task, using three dif-
ferent random seeds.

SimplerEnv [24] simulated benchmark was aimed at
minimizing the gap between reality and simulation by opti-
mizing the PD parameters with simulated annealing to min-
imize the gap between real and simulated end-effector tra-
jectories. The evaluation is focused on four built-in tasks:
pick coke can, move object near object, open drawer, and
close drawer. Further, SimplerEnv allows two types of eval-
uation: (i) visual matching, where the success of a task is
determined by superimposing the real-life images on the
simulation background and (ii) variant aggregation, where
the success rate of a task is averaged over the many vari-
ants of evaluation environment that differ in lighting, back-
ground, textures, distractor objects, etc. The full evaluation
suite contains more than 1,000 episodes across these built-
in tasks. We report the average performance over two runs
for each task.

Cross-Embodiment Evaluation. To evaluate our model
in the real-world, we assessed it on a Galaxea A1l robotic
arm. This embodiment was deliberately chosen due to its
absence from the large-scale pretraining dataset [11]. To
adapt to this embodiment, we first collected 1,000 episodes
of Pick-and-Place tasks via teleoperation. During data col-
lection, we randomize the location of the objects in each
episodes to enforce spatial generalization. We collected
nine unique tasks, such as, “Put apple on the plate”, “Put
mango in the basket”, and “Move the banana next to the
plate”. This set of tasks was designed to cover a variety of
common objects.

To validate the performance of our models, we designed
nine tasks to perform evaluation. Each task is repeated for

10 trials, adhering to Kim et al. [19]. To ensure a rig-
orous and fair comparison, these trials used 10 different
fixed starting positions, which were kept consistent across
all baselines. We divided our nine evaluation tasks into
three categories, with three tasks per category. The first cat-
egory consists of “seen” tasks, which are tasks that were
also included in our fine-tuning dataset. This aims to val-
idate the performance of our model and other baselines by
cross-embodiment transfer.

The second category, “Unseen Object with Seen Distrac-
tor”, features tasks like “Put X in plate”. Here, the target
‘X’ is an unseen object absent from the fine-tuning dataset,
while a familiar “seen” object ‘Y’ present in the fine-tuning
dataset is simultaneously placed in the environment as a dis-
tractor. This setup aims to evaluate the models’ ability to
generalize and their instruction following capabilities.

The final category, “Unseen Instruction with Seen Dis-
tractor” features tasks like “Move X to Z”. These tasks con-
sist of simple instructions absent from the fine-tuning set
and require the model to manipulate a novel object ‘X’ (un-
seen in fine-tuning) and place it relative to a “seen” desti-
nation object ‘Z’. Crucially, a separate “seen” object ‘Y’
is also present in the scene as a distractor. This setup
aims to evaluate the models’ ability to generalize to out-of-
distribution instructions and their robustness to the presence
of distractors.

Metric. In the LIBERO and SimplerEnv simulations, if
the robot successfully completes the task specified by the
prompt, then the trial is counted as a success, receiving a
score of 1; otherwise, a score of 0 is assigned:

% success rate, ‘=

(100E a1~ 11,2,... ,103 1[task 7 is successfully completed])%.

For the Cross-Embodiment Evaluation, we report both
success rate and partial success rate. The partial success
metric is crucial for this real-world setting, as it allows us
to differentiate between models that fail completely and
those that make significant progress, thereby providing a
more comprehensive breakdown of performance and failure
modes.

B. Related Works

Vision-Language—-Action Models. Large-scale vi-
sion—language—action (VLA) models learn general robot
policies by training transformer policies on diverse demon-
stration datasets. RT-1 [9] and the RT-X family trained
on the Open X-Embodiment dataset [12] demonstrated
that scaling real-world robot data and model capacity
yields strong generalization across tasks and embodiments.
Subsequent open VLA models follow this recipe while



incorporating stronger vision—language backbones, includ-
ing OpenVLA [19], Spatial VLA [36], TraceVLA [51],
NORA [16], Emma-X [42], EO-1[34], and MolmoAct [22].
These approaches primarily rely on supervised imitation
learning on large cross-embodiment datasets, sometimes
with additional embodiment-specific fine-tuning, but they
do not study reward-based post-training of VLA policies.

Orthogonally, flow-matching-based action models such
as mg [6] and w5 [18] attach a continuous-time flow-
matching action head to a pre-trained vision—language
backbone to generate smooth, real-time continuous action
trajectories. In parallel, discretized action tokenization
methods such as FAST [32] focus on compressing continu-
ous action sequences into short sequences of discrete tokens
for efficient autoregressive decoding, and can be combined
with 7y to obtain the my-FAST variant. Our NORA-1.5
architecture similarly augments a pre-trained VLA back-
bone [16] with a flow-matching-based action expert; unlike
prior work, we find that this coupling not only improves
inference speed [6, 18] but also yields consistent accuracy
gains across simulated and real-world benchmarks.

World Models for Visual Robot Control. Self-
supervised video and world models aim to predict future
observations conditioned on current observations and
actions, and have been used for planning and model-based
control [13, 46, 52]. V-JEPA2 [2] learns a latent video pre-
diction objective that can be extended to action-conditioned
dynamics, while DINO-WM [53] performs planning in
the latent space of a pre-trained visual encoder. These
methods typically use the world model online for planning
or trajectory optimization. In contrast, we repurpose an
action-conditioned V-JEPA2 variant as a reward model
that scores full action sequences. This enables scalable
synthetic preference generation for VLA post-training
without task-specific reward engineering or high-fidelity
robot simulators. Sim2real evaluation frameworks such as
SimplerEnv [25] focus on accurately matching real robot
trajectories in simulation to provide reliable evaluation for
manipulation policies; we adopt such benchmarks to assess
the gains from our world-model-based rewards.

Preference-based Post-Training and Reward Design.
Preference optimization has become a standard tool for
aligning large language models with human intent. Di-
rect Preference Optimization (DPO) [38] optimizes a pol-
icy directly from pairwise preferences, and Group Rela-
tive Preference Optimization (GRPO) [40] extends this idea
to group-wise comparisons. While VLA models are usu-
ally trained purely with supervised imitation learning, re-
cent work such as RoboMonkey [20] explores synthetic
reward signals for test-time sampling and verification of
robot actions, without updating the underlying policy. Our

work brings preference-based post-training to the VLA set-
ting by constructing synthetic preferences from two com-
plementary reward signals: a world-model-based goal re-
ward and a distance-to-expert-action heuristic. We show
that combining these rewards with DPO yields consistent
performance improvements over purely supervised training
on LIBERO [27] and SimplerEnv [25] benchmarks.
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Figure 4. Examples of NORA-1 .5 executing evaluation tasks in
SimplerEnv: (a) pickup coke and move object near another object
and (b) open and close drawer.
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Figure 5. Examples of NORA-1 . 5 executing evaluation tasks with
Galaxea A1 robotic arm in the real world.



C. Model Architecture and Training Details

NORA-1.5 is adapted from NORA-Long by initializing a
new action expert that has approximately 400 million pa-
rameters. Embeddings of Qwen 2.5 VL and the newly ini-
tialized action expert interact through self-attention only. To
prevent action representation of FAST token leaking to the
action expert, the action expert is only allowed to attend em-
beddings corresponding to the language instruction and the
image. During training, we optimize a joint cross entropy
loss on FAST tokens as well as flow matching loss on the
action expert: Ly o5 = Lcg + aLpy Where Lcg denotes the
cross entropy loss on FAST tokens, Lgy is same as Equa-
tion 3 and « is a scaling term. We set o = 10 during our
training.

NORA-1.5 is trained on the exact same subset of the
Open-X-Embodiment dataset as NORA-Long. Previously,
NORA-Long was trained for 900k gradient steps with a
global batch size of 256. After initializing the action ex-
pert, we jointly optimize L. for another 150k gradient
steps with a global batch size of 512. We use a maximum
learning rate of 5e — 5, a linear warm up of 5000 steps, and
a cosine decay to 0. We used a single node of H100 GPU to
train this for 5 days, approximately using 960 H100 hours.

D. Galaxea Data Collection

We collected 1000 episodes of simple pick and place
tasks via teleportation for fine-tuning 7y, NORA-1.5 and
NORA-Long on Galaxea Al robot. During the collection
of data, we randomly place objects on the table and do not
follow any order. We collected a total of 9 different tasks
where each task has about 100+ episodes.

E. Baselines

We use the following baselines for a comparative evaluation
of our approaches.

OpenVLA [19]: A VLA model is built upon a Llama
2 language model[44] combined with a visual encoder
that integrates pretrained features from DINOv2 [30] and
SigLIP[48]. It is pretrained on the Open-X-Embodiment
dataset [11], which comprises 970k real-world robot
demonstrations.

Spatial VLA [35]: A VLA model focused on spatial un-
derstanding for robot manipulation, incorporating 3D infor-
mation such as spatial movement. It learns a generalist pol-
icy for spatial manipulation across diverse robots and tasks.
Spatial VLA predicts four actions at a time.

TraceVLA [50]: A VLA model enhancing spatial-
temporal reasoning via visual trace prompting. Built by
fine-tuning OpenVLA on robot manipulation trajectories, it
encodes state-action history as visual prompts to improve
manipulation performance in interactive tasks.

RT-1 [8]: A scalable Robotics Transformer model
designed to transfer knowledge from large task-agnostic
datasets. Trained on diverse robotic data, RT-1 achieves a
high level of generalization and task-specific performance
across a variety of robotic tasks, demonstrating the value of
open-ended task-agnostic training of high-capacity models.

HPT [45]. Heterogeneous Pre-trained Transformers
(HPT) pretrain a shared transformer trunk on a large mix-
ture of heterogeneous robot and video datasets, align-
ing proprioceptive and visual inputs into a unified token
sequence. The resulting policy improves generalization
across embodiments and tasks, and we use the released HPT
policies as SimplerEnv baselines.

Octo-Base [29]. Octo is a transformer-based diffu-
sion policy trained on ~800k trajectories from Open X-
Embodiment. We use the Octo-Base variant, a ViT-B—sized
model that supports flexible action and observation spaces
and can be fine-tuned efficiently for new robot setups.

RoboVLM [26]. RoboVLM is a framework for sys-
tematically studying design choices in VLAs and building
generalist policies from diverse VLM backbones, architec-
tures, and cross-embodiment data. We adopt their best-
performing RoboVLM policy as a strong generalist VLA
baseline.

mo and 7y-FAST [6]. 7 is a vision-language-action
model that attaches a flow-matching action expert to a pre-
trained VLM and is trained on a large cross-embodiment
dataset for high-frequency, dexterous control. my-FAST to-
kenize actions as discrete token using the FAST tokenizer.
This enables faster convergence with lesser training com-
pute. Both models serve as powerful generalist baselines.

MolmoAct / MolmoAct-7B-D [22]. MolmoAct is an
action reasoning VLA that factors control into three stages:
depth-aware perception tokens, mid-level spatial trajectory
traces, and low-level actions. We use the 7B-D variant,
MolmoAct-7B-D, which achieves strong zero-shot and fine-
tuned performance on SimplerEnv and LIBERO.

Emma-X [43]. Emma-X is a 7B VLA obtained by fine-
tuning OpenVLA on a hierarchical dataset derived from
BridgeV2, with grounded chain-of-thought reasoning and
look-ahead spatial guidance.

Magma [47]. Magma is a multimodal agentic founda-
tion model that unifies vision, language, and action for both
digital UI navigation and physical robot manipulation. It
introduces visual planning traces and serves as a large-scale
generalist baseline in our real-robot comparisons.

GROOT N1.5 [4, 28]. GROOT N1 is an open VLA foun-
dation model for humanoid robots with a dual-system de-
sign: a vision-language backbone and a diffusion-based ac-
tion policy. GROOT N1.5 is an improved release with archi-
tectural and data updates; we use the 3B N1.5 policy as a
strong generalist baseline.

CoT-VLA [49]. CoT-VLA augments VLAs with visual



chain-of-thought reasoning: it first predicts subgoal images
as visual plans and then generates short action sequences
to reach those subgoals, improving performance on long-
horizon and multi-step manipulation.

WorldVLA [10]. WorldVLA unifies a VLA policy and
an image world model in a single autoregressive trans-
former, jointly modeling images, language, and actions.
The world model predicts future images conditioned on ac-
tions, and the action head benefits from world-model feed-
back for better planning.

ThinkAct [14]. ThinkAct is a dual-system VLA
that separates high-level reasoning from low-level action.
A multimodal LLM produces structured embodied plans
which are compressed into a visual latent, conditioning a
downstream action policy for few-shot adaptation and long-
horizon control.

NORA and NORA-Long [16]. NORA is a 3B
VLA built on Qwen2.5-VL-3B and trained on Open X-
Embodiment data with FAST tokenizer, designed to provide
strong performance under tight compute budgets. NORA-
Long is a variant with an extended action horizon and the
original NORA VLA.
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