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Abstract

Recently, the release of INSTRUCTEVAL [Chia et al., 2023] has provided valuable
insights into the performance of large language models (LLMs) that utilize encoder-
decoder or decoder-only architecture. Interestingly, despite being introduced four
years ago, T5-based LLMs, such as FLAN-T5, continue to outperform the latest
decoder-based LLMs, such as LLAMA and VICUNA, on tasks that require general
problem-solving skills. This performance discrepancy can be attributed to three key
factors: (1) Pre-training data, (2) Backbone architecture, and (3) Instruction dataset.
In this technical report, our main focus is on investigating the impact of the third
factor by leveraging VICUNA, a large language model based on LLAMA, which
has undergone fine-tuning on ChatGPT conversations. To achieve this objective,
we fine-tuned VICUNA using a customized instruction dataset collection called
FLAN-MINI. This collection includes a subset of the large-scale instruction dataset
known as FLAN, as well as various code-related datasets and conversational datasets
derived from ChatGPT/GPT-4. This dataset comprises a large number of tasks that
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demand problem-solving skills. Our experimental findings strongly indicate that the
enhanced problem-solving abilities of our model, FLACUNA, are obtained through
fine-tuning VICUNA on the FLAN dataset, leading to significant improvements
across numerous benchmark datasets in INSTRUCTEVAL. FLACUNA is publicly
available at https://huggingface.co/declare-lab/flacuna-13b-v1.0.

1 Introduction

ChatGPT and its successor GPT-4 have surpassed their prior state-of-the-art models on a vast majority
of the benchmarking tasks and datasets. However, to preserve privacy, natively running a 175B+
sized model like GPT-3 is beyond the capabilities of most organizations, let alone individuals. This
has prompted many researchers to fine-tune manageable-sized LLMs — from 7B to 30B on a diverse
set of instruction examples generated by ChatGPT or GPT-4. This has birthed LLMs, such as,
Alpaca [Taori et al., 2023] and VICUNA [Chiang et al., 2023] that are fine-tuned checkpoints of
LLaMA [Touvron et al., 2023]. These models have attained close to ChatGPT-level performance on
some specific benchmarking tasks, but overall generalization still remains elusive. Recent works like
INSTRUCTEVAL [Chia et al., 2023] strongly hint that the fine-tuning datasets dictate the task-specific
performances. For instance, it has been observed that FLAN-T5 — a T5 checkpoint fine-tuned on
FLAN Collection instruction dataset — outperforms VICUNA and Alpaca on tasks involving strong
reasoning and problem-solving skills. This spurred us to fine-tune VICUNA on FLAN-MINI Collection
dataset, anticipating improvement on reasoning-intensive tasks in INSTRUCTEVAL [Chia et al., 2023].

To this end, we first sample a 1M-sized instruction dataset from the 15M-sized FLAN Collection
dataset [Longpre et al., 2023] and combined it with several other datasets comprising coding tasks
and ChatGPT/GPT-4 distilled conversations. The resulting smaller dataset, FLAN-MINI, is then
cast into the conversational format of VICUNA. To ensure a reasonable computational cost for the
fine-tuning process, we retrofit LoRA [Hu et al., 2021] adapter into the LLaMA [Touvron et al., 2023]
decoder-transformer of VICUNA. Following a parameter-efficient LoRA fine-tuning of the VICUNA
checkpoint on FLAN-MINI, we obtain FLACUNA. As expected, FLACUNA outperforms VICUNA by a
substantial margin on most benchmark datasets, especially for reasoning-intensive tasks. However,
the performance of FLACUNA still remains below FLAN-T5 on the same reasoning benchmarks. This
could be attributed to the 15-times smaller dataset of the instruction dataset which may contain less
diverse samples. Furthermore, full fine-tuning of VICUNA may narrow the gap with FLAN-T5.

This work overall has the following contributions:

1. Improving the problem-solving capability of VICUNA through parameter efficient fine-tuning on
FLAN-MINI.

2. Introducing an instruction tuning dataset, FLAN-MINI, comprising a diverse set of tasks and
templates.

2 Training Details

Preparing the FLAN-MINI Collection. Given the enormous size of the FLAN Collection [Longpre
et al., 2023], we opted to work with a carefully selected subset that maintains a high level of task
diversity while reducing the overall dataset size. In Table 1, we present the specific tasks included
in our subset of FLAN, along with their respective dataset sizes. As the public release of the
FLAN Collection does not include programming tasks, we augment the collection with existing
code datasets. Specifically, we include CodeContests [Li et al., 2022a], APPS [Hendrycks et al.,
2021a] and CodeSearchNet [Husain et al., 2019a]. Following the data processing pipeline of FLAN
Collection, we sample a fixed number of examples from each dataset, where each example is randomly
augmented with different prompt templates. Specifically, the examples are processed with a pool
of handcrafted prompt templates and may be used as zero-shot examples or grouped together with
few-shot demonstrations [Longpre et al., 2023].

Maintaining VICUNA’S Chatting Ability. VICUNA has demonstrated remarkable chatting abil-
ity, achieving 90% of the performance of ChatGPT. This indicates its significant potential as an
open-source alternative to closed-source large language models (LLMs) like ChatGPT. To ensure
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Dataset Name Source Dataset Size
Flan2021 FLAN 388K
Public Pool of Prompts FLAN 320K
Natural instructions v2 FLAN 200K
CoT FLAN 100K
Code Search Husain et al. [2019b] 100K
Code Contest Li et al. [2022b] 50K
Apps Hendrycks et al. [2021b] 50K

GPT4-Alpaca GPT-4 52K
Code-Alpaca ChatGPT 20K
ShareGPT ChatGPT 60K

Total - 1.34M

Table 1: The FLAN-MINI Collection, used to train FLACUNA.

that FLACUNA retains VICUNA’s learned knowledge and chatting ability, we incorporated various
ChatGPT datasets, including Alpaca [Taori et al., 2023], Code Alpaca [Chaudhary, 2023], and
ShareGPT [Chiang et al., 2023], into our FLAN collection. Among these three datasets, VICUNA
was originally fine-tuned using the ShareGPT dataset. The final collection was then used to train
FLACUNA.

Architecture. We employed LORA in the VICUNA model for fine-tuning on the FLAN-MINI
collection. We inserted the low-rank adapters on all the query and value projection layers, resulting
in a total trainable parameter count of 6.55M, which is only around 0.05% of the parameter count of
the original 13B VICUNA model. The maximum input sequence length was set to 1280, and efficient
training was facilitated by utilizing bf16 precision.

Hyperparameter Details. FLACUNA was trained on 4×A6000 GPUs for 1 epoch. We use 16
gradient accumulation steps with a per-device batch size of 2, resulting in a total batch size of 128.
We used 3000 warm-up steps and a learning rate of 2e-5.

3 Evaluation Tasks and Results

3.1 Problem Solving Evaluation

To assess the problem-solving prowess of instructed large language models (LLMs), INSTRUCTEVAL
employs a range of benchmarks encompassing real-world exams that delve into diverse topics. These
benchmarks encompass complex instructions, arithmetic problems, programming challenges, and
causal reasoning tasks. In order to excel in these benchmarks, models need to exhibit a profound
understanding of the world, demonstrate multi-hop reasoning capabilities, showcase creativity, and
employ a plethora of other cognitive skills.

World Knowledge. The Massive Multitask Language Understanding (MMLU) benchmark, intro-
duced in the work by Hendrycks et al. [2021c], serves as an assessment tool to gauge the problem-
solving aptitude and world knowledge of language models across various subjects. It offers evalua-
tions in both zero-shot and few-shot settings, presenting a more challenging and human-like evaluation
scenario. The MMLU benchmark encompasses a comprehensive range of 57 subjects spanning
STEM, humanities, social sciences, and other domains. The difficulty levels of the tasks within
the benchmark vary from elementary to advanced professional levels, providing a comprehensive
assessment of the model’s capabilities in problem-solving and domain understanding.

Complex Instructions. The subset known as BIG-Bench Hard (BBH) comprises 23 highly demand-
ing tasks carefully selected from the BIG-Bench benchmark [Srivastava et al., 2022] to specifically
target tasks that are considered to surpass the current capabilities of language models [Suzgun et al.,
2022]. BBH presents models with intricate instructions that require advanced skills in navigation,
logical deduction, and fallacy detection.
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Comprehension and Arithmetic. Discrete Reasoning Over Paragraphs (DROP) is a reading
comprehension task with a mathematical focus. It challenges systems to engage in discrete reasoning
by analyzing passages extracted from Wikipedia articles. In order to excel in the DROP task, a system
needs to adeptly navigate references within a question and identify the appropriate sections of the
provided passage. Additionally, the system must demonstrate proficiency in performing discrete
operations like addition, counting, or sorting.

Programming. HumanEval serves as a problem-solving benchmark specifically designed for
assessing the performance of large language models that are trained on code [Chen et al., 2021]. The
benchmark comprises 164 unique programming problems, encompassing areas such as language
comprehension, algorithms, and basic mathematics. Some of the problems included in HumanEval
are similar in nature to straightforward software interview questions. In the evaluation process, models
are assessed based on the functional correctness of the code programs they generate, with the criteria
for correctness determined by the given docstrings. HumanEval provides a comprehensive evaluation
framework for assessing the problem-solving capabilities of language models in a code-centric
context.

Causality. The Counterfactual Reasoning Assessment (CRASS) benchmark is a novel dataset
and evaluation tool developed specifically to assess the causal reasoning abilities of large language
models. By employing counterfactual scenarios, CRASS tests the model’s capability to identify and
select appropriate causal explanations. This benchmark provides a unique and rigorous evaluation
framework to gauge the causal reasoning capabilities of language models.

3.2 Alignment to Human Values

Noting the importance of aligning LLMs to human values, INSTRUCTEVAL incorporates the Helpful,
Honest, and Harmless (HHH) benchmark [Askell et al., 2021]. The benchmark showcases engaging
dialogues between humans and conversational assistants, challenging the model to discern and
provide the most appropriate response. It encompasses a diverse array of 61 honesty-related, 59
helpfulness-related, and 58 harmlessness-related samples, along with 43 unique instances falling
within the "other" category. The inclusion of the "other" category accounts for examples that embody
values not explicitly covered by honesty, helpfulness, or harmlessness.

3.3 Writing Experiments

For the writing experiment, we utilized the IMPACT dataset, which is readily available in IN-
STRUCTEVAL. This comprehensive dataset consists of 50 prompts across distinct categories, namely
informative, professional, argumentative, and creative. Following that, ChatGPT was assigned the
responsibility of scoring the models’ responses in terms of relevance (Rel.) and coherence (Coh.) on
a scale of 1 to 5. For more comprehensive information regarding this evaluation, we refer readers to
Chia et al. [2023].

3.4 Results

Comparative Baselines. As baselines, we selected VICUNA [Zheng et al., 2023] and STABLEVI-
CUNA1.

Few-shot Problem-solving. We present the results of FLACUNA on five datasets (see Table 2)
from the INSTRUCTEVAL benchmark, focusing on problem-solving tasks. In 4 out of 5 tasks,
FLACUNA outperformed VICUNA, showing an average performance improvement of 5.6 points over
the LLaMA backbone. However, it performed slightly worse on code-related problem-solving tasks
in the HumanEval dataset, with a margin of 0.6 points. Overall, the improvement in FLACUNA
compared to VICUNA is 5.1 points averaged over the five tasks.

Out of the five problem-solving datasets, one of them, DROP, is categorized as a held-in dataset. It
is a part of our FLAN collection and was utilized for training FLACUNA. As a result, we observed
a significant performance boost of 11 points compared to VICUNA. The remaining datasets are
considered held out.

1https://huggingface.co/CarperAI/stable-vicuna-13b-delta
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Model Size MMLU (5-shot) BBH (3-shot) DROP⋆ (3-shot) CRASS (3-shot) HumanEval (0-shot) Avg.
Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆

GPT-4 - 86.4 - - - 80.9 - - - 67.0 - - -
ChatGPT - 70.0 - 49.5 - 64.1 - 90.5 - 48.1 - 64.5 -

Flan-UL2 20B 55.0 - 44.7 - 64.3 - 94.2 - 0.0 - 51.6 -
Alpaca-Lora 30B 58.4 +0.6 41.3 +2.0 45.1 -0.3 79.2 +10.6 18.9 +4.9 48.6 +3.6
OpenAssistant 30B 56.9 -0.9 39.2 -0.1 46.0 +0.6 67.2 +1.4 23.1 +9.1 46.5 +1.5
OPT-IML 30B 38.6 +11.3 31.3 +3.0 47.5 +28.0 67.2 +32.5 9.1 +7.9 38.7 +16.5

Flan-T5 11B 54.5 +29.3 43.9 +13.6 67.2 +49.7 88.3 +54.7 0.0 +0.0 50.8 +29.5
Flan-Alpaca 11B 50.9 +25.7 23.3 -7.0 62.3 +44.8 90.2 +56.6 0.0 +0.0 45.3 +24.0
Dolly V2 12B 25.6 -1.3 29.7 +0.2 16.6 -0.5 35.8 +1.1 8.5 -0.6 23.2 -0.7

Flan-T5 3B 49.2 +25.9 40.2 +15.9 56.3 +43.7 91.2 +60.2 0.0 +0.0 47.4 +29.2
ChatGLM 6B 36.1 - 31.3 - 44.2 - 51.1 - 3.1 - 33.2 -
Mosaic-Chat 7B 37.1 +1.9 32.0 +1.1 20.2 -7.4 47.5 +13.6 17.7 +7.4 30.9 +3.3

STABLEVICUNA 13B 49.2 +3.0 37.5 +0.4 34.3 -1.0 67.5 +8.7 15.9 +2.5 40.9 +2.7
VICUNA 13B 50.6 +4.5 37.6 +0.5 32.6 -3.0 60.9 +2.1 11.6 -1.8 38.7 +0.5
FLACUNA 13B 51.1 +5.0 39.3 +2.2 43.6 +8.0 74.1 +15.3 11.0 -2.4 43.8 +5.6

Table 2: Evaluation results for problem-solving benchmarks. We denote the original performance
across the benchmarks as Perf., while ∆ denotes the change in performance compared to the
corresponding foundation LLMs. ⋆ indicates that DROP is a held-in dataset.

Model Size MMLU (0-shot) BBH (0-shot) CRASS (0-shot)
Flan-UL2 20B 54.4 34.9 -
OpenAssistant 30B 52.0 33.4 -
OPT IML 30B 41.3 17.4 -

TK-Instruct 11B 39.4 17.1 -
Flan-T5-XXL 11B 54.1 39.5 -

Dolly V2 12B 25.4 22.3 -

STABLEVICUNA 13B 47.5 18.5 64.2
VICUNA 13B 48.3 28.3 65.7
FLACUNA 13B 49.4 32.5 67.9

Table 3: 0-shot problem-solving evaluation of FLACUNA and other baseline models.

0-shot Problem-solving. We conducted a 0-shot performance evaluation of FLACUNA and com-
pared it against both VICUNA and STABLEVICUNA. The results presented in Table 3 demonstrate a
noteworthy performance leap by FLACUNA compared to its competitors. This improvement can be
attributed to the training of FLACUNA on the high-quality FLAN instruction dataset.

HHH Evaluation. We conducted a further evaluation using BBH’s HHH evaluation dataset (see
Table 4), where FLACUNA exhibited an impressive 11% improvement over VICUNA. Notably, our
instruction dataset collection aimed to enhance VICUNA’s problem-solving abilities, but it also had a
positive impact on its HHH performance. This observation aligns with the experience of FLAN-T5,
which achieved a 24.2% performance improvement over its T5 backbone after fine-tuning on FLAN.

Writing Evaluation. While FLACUNA primarily excels in problem-solving tasks, we made efforts
to maintain the impressive writing and chatting ability of VICUNA. To achieve this, we incorporated
conversational datasets generated by GPT-4, such as GPT-4-Alpaca and ShareGPT, into the FLAN-
MINI collection. However, despite these efforts, we observed certain issues in FLACUNA’s writing
performance. In some cases, it generates code snippets in response to prompts that are unrelated to
coding. We attribute this behavior to the significant data imbalance, where the conversational dataset
constitutes only 8.2% of the entire data mixture. Prompt engineering techniques can help rectify such
issues.

We discovered that FLACUNA generates responses of reasonable quality when provided with the fol-
lowing template: “‘A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite answers to
the user’s questions. USER: definition of the task./n/n question/n Output:
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Model Size Harmlessness Helpfulness Honesty Other Avg. ∆ Avg.

ChatGPT - 90.7 91.2 78.1 86.3 86.6 -

Flan-Alpaca 11B 74.2 81.4 77.4 83.4 79.1 +26.6
Flan-T5 11B 75.9 75.3 75.1 79.6 76.7 +24.2
Tk-Instruct 11B 70.1 54.8 62.3 76.0 65.8 +13.3
T5 11B 46.4 54.8 58.1 50.7 52.5 -

Alpaca 13B 49.7 51.2 51.8 45.5 49.5 -12.3
LLaMA 13B 57.2 61.0 57.0 72.0 61.8 -

Dolly V2 12B 51.7 59.9 47.0 58.1 54.2 +9.1
Pythia 12B 41.3 46.1 43.6 49.3 45.1 -

STABLEVICUNA 13B 61.7 67.2 57.1 79.1 66.3 +4.5
VICUNA 13B 62.0 66.1 52.4 74.4 63.7 +1.9
FLACUNA 13B 72.4 71.2 70.5 83.7 74.5 +12.6

Table 4: Evaluation results for alignment to human values on the honesty, helpfulness, and harmless-
ness (HHH) benchmark. Avg. denotes the average performance, while ∆ Avg. denotes the average
improvement compared to the corresponding foundation model.

Model Size Informative Professional Argumentative Creative Avg.
Rel. Coh. Rel. Coh. Rel. Coh. Rel. Coh. Rel. Coh.

ChatGPT - 3.34 3.98 3.88 3.96 3.96 3.82 3.92 3.94 3.78 3.93
Flan-Alpaca 11B 3.56 3.46 3.54 3.70 3.22 3.28 3.70 3.40 3.51 3.46
Flan-T5 11B 2.64 3.24 2.62 3.22 2.54 3.40 2.50 2.72 2.58 3.15
Dolly-V2 12B 3.54 3.64 2.96 3.74 3.66 3.20 3.02 3.18 3.30 3.44

STABLEVICUNA 13B 3.54 3.64 2.96 3.74 3.30 3.20 3.02 3.18 3.21 3.44
VICUNA 13B 3.60 3.96 3.74 3.82 3.82 3.56 3.82 3.92 3.75 3.82
FLACUNA 13B 3.02 3.42 3.48 3.52 3.38 3.02 3.92 3.80 3.45 3.44

Table 5: Evaluation results for writing-based tasks.

ASSISTANT: ”’. This finding suggests that with the appropriate prompts, we can improve
FLACUNA’s chatting performance.

However, upon careful examination of the generated samples, it becomes apparent that FLACUNA
does not outperform VICUNA as a writing assistant. This observation is reinforced by the evaluation
of the generated responses to the prompts in the IMPACT dataset using ChatGPT, as depicted in Table
5. ChatGPT consistently ranks VICUNA’s responses significantly higher than those of FLACUNA.

The subpar performance of FLACUNA in writing-based scenarios can be attributed to several factors.
Firstly, the disproportionate scarcity of conversational datasets in FLAN may have contributed to this
outcome. Additionally, parameter-efficient tuning methods such as LORA may limit the effectiveness
of the model in learning both problem-solving and general writing abilities. Hence, we may explore
other efficient training methods for LLMs in the future [Lv et al., 2023].

An example of the prompt and FLACUNA’s response is shown below.

Prompt: A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite answers to
the user’s questions. USER: You are tasked to demonstrate your writing
skills in professional or work settings for the following question.
Write a user manual for a household appliance, providing step-by-step
instructions for its operation, maintenance, and troubleshooting, using
clear and simple language. Output: ASSISTANT:

FLACUNA’s response:
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1. Introduction
Welcome to the user manual for the XYZ household appliance. This appliance is
designed to make your life easier and more convenient. With this appliance, you
can prepare your meals quickly and efficiently.
2. Operation
To operate the appliance, follow these steps:
a. Turn on the appliance by pressing the power button. b. Select the desired
cooking mode by using the mode selector. c. Place the food inside the appliance. d.
Close the lid and press the start button. e. Wait for the appliance to complete the
cooking process.
3. Maintenance
To keep your appliance in good working condition, follow these steps:
a. Clean the appliance after each use. b. Check the appliance for any signs of
damage or wear and tear. c. If you notice any issues, contact the manufacturer or a
certified repair technician.
4. Troubleshooting
If you encounter any issues with your appliance, try the following troubleshooting
steps:
a. Check the power cord and plug to ensure they are securely connected. b. Check
the fuse to ensure it is not blown. c. Check the appliance manual for troubleshooting
tips. d. If the issue persists, contact the manufacturer or a certified repair technician.
5. Safety Precautions
Always follow these safety precautions when using the appliance:
a. Keep the appliance clean and free of debris. b. Do not use the appliance if
it is damaged or showing signs of wear and tear. c. Do not leave the appliance
unattended while it is in operation. d. Always use the appliance according to the
manufacturer’s instructions.
6. Conclusion
Congratulations on your new XYZ household appliance! With proper use and
maintenance, your appliance will provide you with years of reliable service. If you
have any questions or concerns, please refer to the appliance manual or contact the
manufacturer.

4 Limitations and Future Work

Despite the promising advancements of FLACUNA compared to VICUNA, we have identified some
issues that require addressing:

• If FLACUNA is asked to provide descriptive answers to questions like “Present arguments for or
against lowering the age bar for drinking,” FLACUNA generates code snippets instead. This
behavior could be attributed to its imperfect understanding of instructions or a tendency to
hallucinate.

• FLACUNA is still significantly behind FLAN-T5 in terms of problem-solving abilities.
• Surprisingly, FLACUNA exhibits inferior performance compared to both LLAMA and VICUNA

on coding-related problems. This outcome is unexpected, considering that we incorporated
numerous coding problem-solving datasets into our instruction tuning collection.

• FLACUNA is trained with a maximum input sequence length of 1280 which limits its ability to
comprehend longer input sequences.

To address these limitations and known issues, we can explore the following steps:

• Based on previous studies, it has been observed that LoRA performs better with larger models [Chia
et al., 2023], such as those with 30B or 65B parameters, and excels in task-specific settings.
Therefore, in future work, we could enhance FLACUNA by fully fine-tuning VICUNA, without
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LoRA, particularly on the FLAN collection. Another future work is to train FLACUNA on longer
token length.

• We can incorporate the original FLAN collection into the training process, as it is fifteen times
larger than the instruction dataset we used in this study. FLAN-T5 underwent training on this
extensive collection, which resulted in remarkable problem-solving performance.

• The chatting or writing performance of FLACUNA could be improved by incorporating larger
conversational datasets in FLAN-MINI and subsequently training FLACUNA on it.
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