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Abstract—Sentiment analysis as a field has come a long way since it was first introduced as a task nearly 20 years ago. It has
widespread commercial applications in various domains like marketing, risk management, market research, and politics, to name a few.
Given its saturation in specific subtasks — such as sentiment polarity classification — and datasets, there is an underlying perception
that this field has reached its maturity. In this article, we discuss this perception by pointing out the shortcomings and under-explored,
yet key aspects of this field that are necessary to attain true sentiment understanding. We analyze the significant leaps responsible for
its current relevance. Further, we attempt to chart a possible course for this field that covers many overlooked and unanswered
questions.
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1 INTRODUCTION

S ENTIMENT analysis, also known as opinion mining, is a
research field that aims at understanding the underlying

sentiment of unstructured content. E.g., in this sentence,
“John dislikes the camera of iPhone 7”, according to the
technical definition (Liu, 2012) of sentiment analysis, John
plays the role of the opinion holder exposing his negative
sentiment towards the aspect – camera of the entity – iPhone
7. Since its early beginnings (Pang et al., 2002; Turney, 2002),
sentiment analysis has established itself as an influential
field of research with widespread applications in industry.
The ever increasing popularity and demand stem from
the interest of individuals, businesses, and governments
in understanding people’s views about products, political
agendas, or marketing campaigns. Public opinion also stim-
ulates market trends, which makes it relevant for financial
predictions. Furthermore, education and healthcare sectors
make use of sentiment analysis for behavioral analysis of
students and patients.

Over the years, the scope for innovation and commercial
demand have jointly driven research in sentiment analysis.
However, over the past few years, there has been an emerg-
ing perception that the problem of sentiment analysis is
merely a text/content categorization task – one that requires
content to be classified into two or three categories of
sentiments: positive, negative, and/or neutral. This has led
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to a belief among researchers that sentiment analysis has
reached its saturation. Through this work, we set forth to
address this misconception.

Figure 1 shows that many benchmark datasets on the
polarity detection subtask of sentiment analysis, like IMDB
or SST-2, have reached saturation points, as reflected by the
near perfect scores achieved by many modern data-driven
methods. However, this does not imply that sentiment anal-
ysis is solved. Rather, we believe that this perception of sat-
uration has manifested from excessive research publications
focusing only on shallow sentiment understanding, such as,
k-way text classification whilst ignoring other key un- and
under-explored problems relevant to this field of research.

Liu (2015) presents sentiment analysis as mini-NLP,
given its reliance on topics covering almost the entirety of
NLP. Similarly, Cambria et al. (2017) characterize sentiment
analysis as a big suitcase of subtasks and subproblems,
involving open syntactic, semantic, and pragmatic prob-
lems. As such, there remains a number of open research
directions to be extensively studied, such as understanding
motive and cause of sentiment; sentiment dialogue genera-
tion; sentiment reasoning; and so on. At its core, effective
inference of sentiment requires understanding of multi-
ple fundamental problems in NLP. These include assign-
ing polarities to aspects, negation handling, resolving co-
references, and identifying syntactic dependencies to exploit
sentiment flow. Sentiment analysis is also influenced by the
figurative nature of language which is often exploited using
linguistic devices, such as, sarcasm and irony. This complex
composition of multiple tasks makes sentiment analysis a
challenging yet interesting research space.
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Fig. 1: Performance trends of recent models on IMDB (Maas et al., 2011), SST-2, SST-5 (Socher et al., 2013) and
Semeval (Pontiki et al., 2014) datasets. The tasks involve sentiment classification in either aspect or sentence level. Note:
Data obtained from https://paperswithcode.com/task/sentiment-analysis.

Figure 1 also demonstrates that the methods with a
contextual language model as their backbone, much like
in other areas of NLP, have dominated these bench-
mark datasets. Equipped with millions of parameters,
transformer-based networks such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and their variants have
pushed the state-of-the-art to new heights. Despite this per-
formance boost, these models are opaque and their inner-
workings are not fully understood. Thus, the question that
remains is how far have we progressed since the beginning
of sentiment analysis (Pang et al., 2002)?

The importance of lexical, syntactical, and contextual
features have been acknowledged numerous times in the
past. Recently, due to the advent of the powerful contex-
tualized word embeddings and networks like BERT, we
can compute much better representation of such features.
Does this entail true sentiment understanding? Not likely,
as we are far from any significant achievement in multi-
faceted sentiment research, such as the underlying motivations
behind an expressed sentiment, sentiment reasoning, and so
on. We believe that, as members of this research commu-
nity, we should strive to move past simple classification as
the benchmark of progress, and instead direct our efforts
towards learning tangible sentiment understanding. Taking a
step in this direction would include analyzing, customiz-
ing, and training modern architectures in the context of
sentiment, with an emphasis on fine-grained analysis and
exploration of parallel new directions, such as multimodal
learning, sentiment reasoning, sentiment-aware natural lan-
guage generation, and figurative language.

The primary goal of this paper is to motivate new
researchers approaching this area. We begin by summariz-
ing the key milestones reached (Figure 3) in the last two
decades of sentiment analysis research, followed by opening
the discussion on new and understudied research areas of
sentiment analysis. We also identify some of the critical
shortcomings in several sub-fields of sentiment analysis
and describe potential research directions. This paper is
not intended as a survey of the field – we mainly cover
a small number of key contributions that have either had
a seminal impact on this field or have the potential to open
new avenues. Our intention, thus, is to draw attention to key
research topics within the broad field of sentiment analysis
and identify critical directions left to be explored. We also
uncover promising new frameworks and applications that
may drive sentiment analysis research in the near future.

The rest of the paper is organized as follows: Section 2
briefly describes the key developments and achievements
in the sentiment analysis research; we discuss the future
directions of sentiment analysis research in Section 3; and
finally, Section 4 concludes the paper. We illustrate the
overall organization of the paper in Figure 2. We curate
all the articles, that cover the past and future of sentiment
analysis (see Figure 2), on this repository: https://github.
com/declare-lab/awesome-sentiment-analysis.

2 NOSTALGIC PAST: DEVELOPMENTS AND
ACHIEVEMENTS IN SENTIMENT ANALYSIS

The fields of sentiment analysis and opinion mining —
often used as synonyms — aim at determining the sentiment

https://paperswithcode.com/task/sentiment-analysis
https://github.com/declare-lab/awesome-sentiment-analysis
https://github.com/declare-lab/awesome-sentiment-analysis
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Fig. 2: The paper is logically divided into two sections. First, we analyze the past trends and where we stand today in
the sentiment analysis Literature. Next, we present an Optimistic peek into the future of sentiment analysis, where we
discuss several applications and possible new directions. The red bars in the figure estimates the present popularity of each
application. The lengths of these bars are proportional to the logarithm of the publication counts on the corresponding
topics in Google Scholar since 2000. Note: SA and ABSA are the acronyms for Sentiment Analysis and Aspect-Based
Sentiment Analysis.

polarity of unstructured content in the form of text, audio
streams, or multimedia-videos.

2.1 Early Sentiment Analysis
The task of sentiment analysis originated from the analysis
of subjectivity in sentences (Wiebe et al., 1999; Wiebe, 2000;
Hatzivassiloglou & Wiebe, 2000; Yu & Hatzivassiloglou,
2003; Wilson et al., 2005). Wiebe (1994) associated subjective
sentences with private states of the speaker, that are not open
for observation or verification, taking various forms such as
opinions or beliefs. Research in sentiment analysis, however,
became an active area only since 2000 primarily due to
the availability of opinionated online resources (Tong, 2001;
Morinaga et al., 2002; Nasukawa & Yi, 2003). One of the
seminal works in sentiment analysis involves categorizing
reviews based on their orientation (sentiment) (Turney,

2002). This work generalized phrase-level orientation min-
ing by enlisting several syntactic rules (Hatzivassiloglou
& McKeown, 1997) and also introduced the bag-of-words
concept for sentiment labeling. It stands as one of the early
milestones in developing this field of research.

Although preceded by related tasks, such as identifying
affect, the onset of the 21st century marked the surge of
modern-day sentiment analysis.

2.2 Granularities
Traditionally, sentiment analysis research has mainly fo-
cused on three levels of granularity (Liu, 2012, 2010):
document-level, sentence-level, and aspect-level sentiment
analysis.

In document-level sentiment analysis, the goal is to infer the
overall opinion of a document, which is assumed to convey
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a unique opinion towards an entity, e.g., a product (Pang &
Lee, 2004; Glorot et al., 2011; Moraes et al., 2013b). Pang et al.
(2002) conducted one of the initial works on document-level
sentiment analysis, where they assigned positive/negative
polarity to review documents. They used a variety of fea-
tures including unigrams (bag of words) and trained sim-
ple classifiers, such as Naive Bayes classifiers and SVMs.
Although primarily framed as a classification/regression
task, alternate forms of document-level sentiment analysis
research include other tasks such as generating opinion
summaries (Ku et al., 2006; Lloret et al., 2009).

Sentence-level sentiment analysis restricts the analysis to
individual sentences (Yu & Hatzivassiloglou, 2003; Kim &
Hovy, 2004). These sentences could belong to documents,
conversations, or standalone micro-texts found in resources
such as microblogs (Kouloumpis et al., 2011).

While both document- and sentence-level sentiment
analysis provide an overall sentiment orientation, in many
cases, they do not indicate the target of the sentiment. They
have an implicit assumption that the text span (document
or sentence) conveys a single sentiment towards an entity,
which generally represents a strong assumption.

To overcome this challenge, the analysis is directed
towards a finer level of scrutiny, i.e., aspect-level sentiment
analysis, where sentiment is identified for each entity (Hu
& Liu, 2004b) (along with its aspects). Aspect-level analysis
allows a better understanding of the sentiment distribution.
We discuss the challenges of aspect-level sentiment analysis
in Section 3.1.

2.3 Trends in Sentiment Analysis Applications

Rule-Based Sentiment Analysis: A major section of
the history of sentiment analysis research has focused
on utilizing sentiment-bearing words and utilizing their
compositions to analyze phrasal units for polarity. Early
work identified that the simple counting of valence words,
i.e., a bag-of-words approach, can provide incorrect re-
sults (Polanyi & Zaenen, 2006). This led to the emergence
of valence shifters that incorporated changes in valence and
polarity of terms based on contextual usage (Polanyi &
Zaenen, 2006; Moilanen & Pulman, 2007). However, only
valence shifters were not enough to detect sentiment – it
also required understanding sentiment flows across syn-
tactic units. Thus, researchers introduced the concept of
modeling sentiment composition, learned via heuristics and
rules (Choi & Cardie, 2008), hybrid systems (Rentoumi et al.,
2010), syntactic dependencies (Nakagawa et al., 2010; Poria
et al., 2014; Hutto & Gilbert, 2014), amongst others.

Sentiment Lexicons are at the heart of rule-based sen-
timent analysis methods. Defined simplistically, these lexi-
cons are dictionaries that contain sentiment annotations for
their constituent words, phrases, or synsets (Joshi et al.,
2017a).

SentiWordNet (Esuli & Sebastiani, 2006) is one such pop-
ular sentiment lexicon that builds on top of Wordnet (Miller,
1995). In this lexicon, each synset is assigned with pos-
itive, negative, and objective scores, which indicate their
subjectivity orientation. As the labeling is associated with
synsets, the subjectivity score is tied to word senses. This
trait is desirable as subjectivity and word-senses have strong

semantic dependence, as highlighted in Wiebe & Mihalcea
(2006).

Other popular lexicons include SO-CAL (Taboada et al.,
2011), SCL-OPP (Kiritchenko & Mohammad, 2016a), SCL-
NMA (Kiritchenko & Mohammad, 2016b), and so on. These
are lexicons that not just store word-polarity associations
but also try to include phrases or rules that reflect complex
sentiment compositions, e.g., negations, intensifiers.

Though lexicons provide valuable resources for archiv-
ing sentiment polarity of words or phrases, utilizing them to
infer sentence-level polarities have been quite challenging.
Moreover, no one lexicon can handle all the nuances ob-
served from semantic compositionality or account for con-
textual polarity. Lexicons also have many challenges in their
creation, such as combating subjectivity in annotations (Mo-
hammad, 2017). Statistical solutions, instead, provide better
opportunities to handle these factors.

Machine Learning-Based Sentiment Analysis: Sta-
tistical approaches that employ machine learning have
been appealing to this area, particularly due to their in-
dependence over hand-engineered rules. Despite best ef-
forts, the rules could never be enumerated exhaustively,
which always kept the generalization capability limited.
With machine learning, the opportunity to learn generic
representations emerged. Throughout the development of
sentiment analysis, ML-based approaches–both supervised
and unsupervised–have employed myriad of algorithms
that include SVMs (Moraes et al., 2013a), Naive Bayes Clas-
sifiers (Tan et al., 2009), nearest neighbour (Moghaddam &
Ester, 2010), combined with features that range from bag-
of-words (including weighted variants) (Martineau & Finin,
2009), lexicons (Gavilanes et al., 2016) to syntactic features
such as parts of speech (Mejova & Srinivasan, 2011). A
detailed review for most of these works has been provided
in (Liu, 2010, 2012).

Deep Learning Era: The advent of deep learning saw
the use of distributional embeddings and techniques for rep-
resentation learning for various tasks of sentiment analysis.
One of the initial models was the Recursive Neural Tensor
Network (RNTN) Socher et al. (2013), which determined
the sentiment of a sentence by modeling the compositional
effects of sentiment in its phrases. This work also proposed
the Stanford Sentiment Treebank corpus comprising of parse
trees fully labeled with sentiment labels. The unique usage
of recursive neural networks adapted to model the composi-
tional structure in syntactic trees was highly innovative and
influencing (Tai et al., 2015).

CNNs and RNNs were also used for feature extraction.
The popularity of these networks, especially that of CNNs,
can be traced back to Kim (2014). Although CNNs had
been used in NLP systems earlier (Collobert et al., 2011),
the investigatory work by Kim (2014) presented a CNN
architecture which was simple (single-layered) and also
delved into the notion of non-static embeddings. It was a
popular network, that became the de-facto sentential feature
extractor for many of the sentiment analysis tasks. Similar to
CNNs, RNNs also enjoyed high popularity. Not just in po-
larity prediction, but these architectures showed dominance
over traditional graphical models in structured prediction
tasks such as aspect and opinion-term extraction (Poria
et al., 2016; Irsoy & Cardie, 2014). Aspect-level sentiment
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Fig. 3: A non-exhaustive illustration of some of the milestones of sentiment analysis research.

analysis, in particular, saw an increase in complex neural ar-
chitectures that involve attention mechanisms (Wang et al.,
2016), memory networks (Tang et al., 2016b) and adversarial
learning (Karimi et al., 2020; Chen et al., 2018). For a com-
prehensive review of modern deep learning architectures,
please refer to (Zhang et al., 2018a).

Although the majority of the works employing deep
networks rely on automated feature learning, their heavy
reliance on annotated data is often limiting. As a result,
providing inductive biases via syntactic information, or
external knowledge in the form of lexicons as additional
input has seen a resurgence (Tay et al., 2018b).

As seen in Figure 1, the recent works based on neural
architectures (Le & Mikolov, 2014; Dai & Le, 2015; John-
son & Zhang, 2016; Miyato et al., 2017; McCann et al.,
2017; Howard & Ruder, 2018; Xie et al., 2019; Thongtan
& Phienthrakul, 2019) have dominated over traditional ma-
chine learning models (Maas et al., 2011; Wang & Manning,
2012). Similar trends can be observed in other benchmark
datasets such as Yelp, SST (Socher et al., 2013), and Ama-
zon Reviews (Zhang et al., 2015). Within neural methods,
much like other fields of NLP, present trends are dominated
by the contextual encoders, which are pre-trained as lan-
guage models using the Transformer architecture (Vaswani
et al., 2017). Models like BERT, XLNet, RoBERTa, and
their adaptations have achieved the state-of-the-art perfor-
mances on multiple sentiment analysis datasets and bench-
marks (Hoang et al., 2019; Munikar et al., 2019; Raffel et al.,
2019). Despite this progress, it is still not clear as to whether
these new models learn the composition semantics associ-
ated to sentiment or simply learn surface patterns (Rogers
et al., 2020).

Sentiment-Aware Word Embeddings: One of the crit-
ical building blocks of a deep-learning architecture is its
word embeddings. It is known that word representations
rely on the task it is being used for (Labutov & Lipson, 2013),
however, most sentiment analysis-based models rely on
generic word representations. Tang et al. (2014) proposed an
important work in this direction that provided word repre-
sentations tailored for sentiment analysis. While general em-
beddings mapped words with similar syntactic context into
nearby representations, this work incorporated sentiment
information into the learning loss to account for sentiment

regularities. Although the community has proposed some
approaches in this topic (Maas et al., 2011; Bespalov et al.,
2011), promising traction has been limited (Tang et al., 2015).
Further, with the popularity of contextual models such as
BERT, it remains to be seen how can sentiment information
be incorporated into its embeddings.

Sentiment Analysis in Micro-blogs: Sentiment analy-
sis in micro-blogs, such as Twitter, require different process-
ing techniques compared to traditional text pieces. Being
limited in length, one of the positives is that user’s tend
to express their opinion in a straightforward manner. How-
ever, cases of sarcasm and irony often challenge these sys-
tems. Tweets are rife with internal slangs, abbreviations, and
emoticons – which adds to the complexity for mining the
opinions in them. Moreover, the limited length restricts the
presence of contextual cues normally present in dialogues
or documents (Kharde & Sonawane, 2016).

From a data point of view, opinionated data is found in
abundance in these micro-blogs. Reflections of this has been
observed in the recent benchmark shared tasks that has been
mostly based on Twitter data. These include Semeval shared
tasks for sentiment analysis, aspect based sentiment analysis
and figurative language in Twitter 1, 2, 3, 4.

A new trend amongst users in Twitter is the concept of
daisy-chaining multiple tweets to compose a longer piece
of text. Existing research, however, has not addressed this
phenomena to acquire additional context. Future work on
twitter sentiment analysis could be benefited from analyzing
personality of the users based on the their historical tweets.

3 OPTIMISTIC FUTURE: UPCOMING TRENDS IN
SENTIMENT ANALYSIS

The previous section highlighted some of the milestones in
sentiment analysis research, which helped developing the
field into its present state. Despite the progress, we believe,
the problems are far from solved along with the emergence
of new problems and applications. In this section, we take
an optimistic view on the road ahead in sentiment analysis

1. http://alt.qcri.org/semeval2015/task10/
2. http://alt.qcri.org/semeval2015/task12/
3. http://alt.qcri.org/semeval2015/task11/
4. https://sites.google.com/view/figlang2020/

http://alt.qcri.org/semeval2015/task10/
http://alt.qcri.org/semeval2015/task12/
http://alt.qcri.org/semeval2015/task11/
https://sites.google.com/view/figlang2020/
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Fig. 4: The example illustrates the various challenges and applications that holistic sentiment analysis depends on.

research and highlight several applications rife with open
problems and challenges.

Applications of sentiment analysis take form in many
ways. Section 2.3 presents one such example where a user
is chatting with a chit-chat style chatbot. In the conver-
sation, to come up with an appropriate response, the bot
needs an understanding of the user’s opinion. This involves
multiple sub-tasks that include 1) extracting aspects like
service, seats for the entity airline, 2) aspect-level sentiment
analysis along with knowing 3) who holds the opinion
and why (sentiment reasoning). Added challenges include
analyzing code-mixed data (e.g. “les meilleurs du monde”),
understanding domain-specific terms (e.g., rude crew), and
handling sarcasm – which could be highly contextual and
detectable only when preceding utterances are taken into
consideration. Once the utterances are understood, the bot
now has to determine appropriate response-styles and per-
form controlled-NLG based on the decided sentiment. The
overall example demonstrates the dependence of sentiment
analysis on these applications and sub-tasks, some of which
are new and still at early stages of development. We discuss
these applications next.

3.1 Aspect-Based Sentiment Analysis

Although sentiment analysis provides an overall indication
of the author or speaker’s sentiments, it is often the case
when a piece of text comprises of multiple aspects with
varied sentiments associated to them. Take for example the
following sentence “This actor is the only failure in an otherwise
brilliant cast.”. Here, the opinion is attached to two particular
entities, actor (negative opinion) and cast (positive opinion).
Additionally, there is also an absence of an overall opinion
that could be assigned to the full sentence.

Aspect-based Sentiment Analysis (ABSA) takes such find-
grained view and aims to identify the sentiments towards
each entity (and/or their aspects) (Liu, 2015; Liu & Zhang,
2012). The problem involves two major sub-tasks, 1) Aspect-
extraction, which identifies the aspects 5 mentioned within
a given sentence or paragraph (actor and cast in the above
example) 2) Aspect-level Sentiment Analysis (aspect-level sen-
timent analysis), which determines the sentiment orienta-
tion associated with the corresponding aspects/ opinion
targets (actor ↦ negative and cast ↦ positive) (Hu & Liu,
2004a). Proposed approaches for aspect extraction include
rule-based strategies (Qiu et al., 2011; Liu et al., 2015), topic
models (Mei et al., 2007; He et al., 2011), and more recently,
sequential models such as CRFs (Shu et al., 2017). For
aspect-level sentiment analysis, the algorithms primarily
aim to model the relationship between the opinion tar-
gets and their context. To achieve this, models based on
CNNs (Li & Lu, 2017), memory networks (Tay et al., 2017),
and so on have been explored. Primarily, the associations
have been learnt through attention mechanism (Wang et al.,
2016).

Despite the advances in this field, there remain many
factors which are open for research and hold the potential
to improve performances further. We discuss them below.

3.1.1 Aspect-Term Auto-Categorization
Aspect-terms extraction is the first step towards aspect-level
sentiment analysis. This task has been studied rigorously in
the literature (Poria et al., 2016). Thanks to the advent of
deep sequential learning, the performance of this task on
the benchmark datasets (Hu & Liu, 2004b; Pontiki et al.,

5. In the context of aspect-based sentiment analysis, aspect is the
generic term utilized for topics, entities, or their attributes/features.
They are also known as opinion targets.
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Screen NetworkProcessor

Panel Resolution 5G Signal qualityClock speed Cache

Fig. 5: An example of the aspect term auto-categorization.

2016) has reached a new level. Aspect terms are needed to
be categorized into aspect groups to present a coherent view
of the expressed opinions. We illustrate this categorization
in Fig. 5. Approaches to aspect-term auto-categorization
are mostly supervised and unsupervised topic classifica-
tion based and lexicon driven. All these three types of
approaches succumb to scalability issues when subjected
to new domains with novel aspect categories. We believe
that entity linking-based approaches, coupled with semantic
graphs like Probase (Wu et al., 2012), should be able to
perform reasonably while overcoming scalability issues. For
example, the sentence “With this phone, I always have hard time
getting signal indoors.” contains one aspect term signal, that
can be passed to an entity linker — on a graph containing
a tree shown in Fig. 5 — with the surrounding words as
context to obtain aspect category phone:signal-quality.

3.1.2 Implicit Aspect-Level Sentiment Analysis

Sentiment can be expressed implicitly on aspects. Although
under-studied, the importance of detecting implicit aspect
level sentiment can not be ignored as they represent a
unique nature of the natural language. For example, in
the sentence “Oh no! Crazy Republicans voted against this
bill”, the speaker expresses her/his negative sentiment on
the republicans explicitly. By doing so, we can infer that the
speaker’s sentiment towards the bill is positive. In the work
by Deng et al. (2014), it is called as opinion-oriented implica-
tures. Approaches (Deng et al., 2014; Deng & Wiebe, 2014) to
this problem primarily focus on linear programming, logic
rules, and belief propagation in the graph network. Major
attention from the neural network community to address
this research problem is yet to be witnessed.

3.1.3 Aspect Term-Polarity Co-Extraction

Most existing algorithms in this area consider aspect ex-
traction and aspect-level sentiment analysis as sequential
(pipelined) or independent tasks. In both these cases, the re-
lationship between the tasks is ignored. Efforts towards joint
learning of these tasks have gained traction in recent trends.
These include hierarchical neural networks (Lakkaraju et al.,
2014), multi-task CNNs (Wu et al., 2016), and CRF-based ap-
proaches by framing both the sub-tasks as sequence labeling
problems (Li et al., 2019a; Luo et al., 2019). The notion of
joint learning opens up several avenues for exploring the
relationships between both the sub-tasks and also, possible
dependencies from other tasks. This strategy is adopted by
transfer learning approaches, which we discuss next.

3.1.4 Transfer Learning in Aspect-Based Sentiment Analy-
sis (ABSA)
Much like the recent trends in the overall field of NLP, trans-
fer learning approaches such as BERT have shown potential
in aspect-based sentiment analysis too (Huang & Carley,
2019). Simple baselines utilizing BERT has demonstrated
competitive performances against sophisticated state-of-the-
art methods (Li et al., 2019b) and also in out-of-domain
settings (Hoang et al., 2019). These trends indicate the role
of semantic understanding for the task of aspect-based
sentiment analysis. What remains to be seen is the future
role of BERT-based networks working in conjunction with
the task-dependent designs existing as the present state of
the arts in this area (Sun et al., 2019).

Knowledge can also be transferred from one sentiment
task to another. E.g., aspect extraction can be utilized as a
scaffolding for aspect-based sentiment analysis as these two
tasks are correlated. It would also be interesting to transfer
knowledge from textual to multimodal ABSA system.

3.1.5 Exploiting Inter-Aspect Relations for Aspect-Level
Sentiment Analysis
The primary focus of algorithms proposed for aspect-level
sentiment analysis has been to model the dependencies be-
tween opinion targets and their corresponding opinionated
words in the context (Tang et al., 2016a). Besides, modeling
the relationships between aspects also holds potential in this
task (Hazarika et al., 2018c). For example, in the sentence
”my favs here are the tacos pastor and the tostada de
tinga”, the aspects ”tacos pastor” and ”tostada de tinga” are
connected using conjunction ”and” and both rely on the
sentiment bearing word ”favs”. Understanding such inter-
aspect dependency can significantly aid the aspect-level sen-
timent analysis performance and remains to be researched
extensively.

3.1.6 Quest for Richer and Larger Datasets
The two widely used publicly available datasets for aspect-
based sentiment analysis are Amazon product review (Hu &
Liu, 2004b) and Semeval 2017 (Pontiki et al., 2016) datasets.
Both these datasets are quite small in size that hinders any
statistically significant improvement in performance when
comparing the methods that utilize these datasets.

3.2 Multimodal Sentiment Analysis
The majority of research works on sentiment analysis have
been conducted using only textual modality. However, with
the increasing number of user-generated videos available
on online platforms such as YouTube, Facebook, Vimeo,
and others, multimodal sentiment analysis has emerged
at the forefront of sentiment analysis research. The com-
mercial interests fuel this rise as the enterprises tend to
make business decisions on their products by analyzing
user sentiments in these videos. Figure 6 presents examples
where the presence of multimodal signals in addition to the
text itself is necessary in order to make correct predictions of
their emotions and sentiments. Multimodal fusion is at the
heart of multimodal sentiment analysis with an increasing
number of works proposing new fusion techniques. These
include Multiple Kernel Learning, tensor-based non-linear
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Fig. 6: Importance of multimodal cues. Green shows pri-
mary modalities responsible for sentiment and emotion.

fusion (Zadeh et al., 2017), memory networks (Zadeh et al.,
2018a), amongst others. The granularity at which such fu-
sion methods are applied also varies – from word-level to
utterance-level.

Below, we identify three key directions that can aid
future research:

3.2.1 Complex Fusion Methods vs Simple Concatenation
Multimodal information fusion is a core component of
multimodal sentiment analysis. Although several fusion
techniques (Zadeh et al., 2018c,a, 2017) have been recently
proposed, in our experience, a simple concatenation-based
fusion method performs at par with most of these methods.
We believe these methods are unable to provide significant
improvements in the fusion due to their inability to model
correlations among different modalities and handle noise.
Reliable fusion remains as a major future work.

3.2.2 Lack of Large Datasets
The field of multimodal sentiment analysis also suffers from
the lack of larger datasets. The available datasets, such as
MOSI (Zadeh et al., 2016), MOSEI (Zadeh et al., 2018b),
MELD (Poria et al., 2018) are not large enough and carry
suboptimal inter-annotator agreement that impedes the per-
formance of complex deep learning frameworks.

3.2.3 Fine-Grained Annotation
The primary goal of multimodal fusion is to accumulate the
contribution from each modality. However, measuring that
contribution is not trivial as there is no available dataset
that annotates the individual role of each modality. We
show one such example in Figure 6, where each modality
is labeled with the sentiment it carries. Having such rich
fine-grained annotations should better guide multimodal
fusion methods and make them more interpretable. This
fine-grained annotation can also open the door to the new
types of multimodal fusion approaches.

3.3 Contextual Sentiment Analysis
3.3.1 Influence of Topics
The usage of sentiment words varies from one topic to
another. Words that sound neutral on the surface can bear

sentiment when conjugated with other words or phrases.
For example, the word big in big house can carry positive
sentiment when someone intends to purchase a big house
for leisure. The same word, however, could evoke negative
sentiments when used in the context – A big house is hard to
clean. Unfortunately, research in sentiment analysis has not
focused much on this aspect. The sentiment of some words
can be vague and specified only when seen in context,
e.g., the word massive in the context of massive earthquake
and massive villa. In the future, a dataset composed of
such contextual sentiment bearing phrases would be a great
contribution to the research community.

This research problem is also related to word sense
disambiguation. Below we present an example, borrowed
from the work by Choi et al. (2017):

a. The Federal Government carried the province for many
years.

b. The troops carried the town after a brief fight.
In the first sentence, the sense of carry has a positive

polarity. However, in the second sentence, the same word
has negative connotations. Hence, depending on the con-
text, sense of words and their polarities can change. In
(Choi et al., 2017), the authors adopted topic models to
associate word senses with sentiment. As this particular
research problem widens its scope to the task of word sense
disambiguation, it would be useful to employ contextual
language models to decipher word senses in contexts and
assign the corresponding polarity.

3.3.2 Sentiment Analysis in Monologues and Conversa-
tional Context

Context is at the core of NLP research. According to sev-
eral recent studies (Peters et al., 2018; Devlin et al., 2019),
contextual sentence and word-embeddings can improve
the performance of the state-of-the-art NLP systems by a
significant margin.

The notion of context can vary from problem to problem.
For example, while calculating word representations, the
surrounding words carry contextual information. Likewise,
to classify a sentence in a document, other neighboring
sentences are considered as its context. Poria et al. (2017)
utilize surrounding utterances in a video as context and
experimentally show that contextual evidence indeed aids
in classification.

There have been very few works on inferring implicit
sentiment (Deng & Wiebe, 2014) from context. This is crucial
for achieving true sentiment understanding. Let us consider
this sentence “Oh no. The bill has been passed”. As there are
no explicit sentiment markers present in the sentence – “The
bill has been passed”, it would sound like a neutral sentence.
Consequently, the sentiment behind ‘bill’ is not expressed
by any particular word. However, considering the sentence
in the context – “Oh no”, which exhibits negative sentiment,
it can be inferred that the opinion expressed on the ‘bill’
is negative. The inferential logic that one requires to arrive
at such conclusions is the understanding of sentiment flow
in the context. In this particular example, the contextual
sentiment of the sentence – “Oh no” flows to the next sen-
tence and thus making it a negative opinionated sentence.
Tackling such tricky and fine-grained cases require bespoke
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I don’t think I can do this anymore. 
[ frustrated ]

Well I guess you aren’t trying hard 
enough. [ neutral ]

      Its been three years. I have tried 
everything. [ frustrated ]

         I am smart enough. I am really good at  
what I do. I just don’t know how to make  

someone else see that. [anger]

PBPA

u1

u3

u6

u2

Maybe you’re not smart enough. [ neutral ]

Just go out and keep trying. [ neutral ]

u4

u5

Fig. 7: An abridged dialogue from the IEMOCAP
dataset (Busso et al., 2008).

modeling and datasets containing an ample quantity of such
non-trivial samples. Further, commonsense knowledge can
also aid in making such inferences. In the literature (Poria
et al., 2017), the use of LSTMs to model such sequential
sentiment flow has been ineffectual. We think it would be
fruitful to utilize logic rules, finite-state transducers, belief,
and information propagation mechanisms to address this
problem. We also note that contextual sentences may not
always help. Hence, one can ponder the use of a gate or
switch to learn and further infer when to count on contex-
tual information.

In conversational sentiment-analysis, to determine the
emotions and sentiments of an utterance at time t, the
preceding utterances at time < t can be considered as its
context. However, computing this context representation
can often be difficult due to complex sentiment dynamics.

Sentiments in conversations are deeply tied with emo-
tional dynamics consisting of two important aspects: self
and inter-personal dependencies (Morris & Keltner, 2000). Self-
dependency, also known as emotional inertia, deals with the
aspect of influence that speakers have on themselves during
conversations (Kuppens et al., 2010). On the other hand,
inter-personal dependencies relate to the sentiment-aware
influences that the counterparts induce into a speaker. Con-
versely, during the course of a dialogue, speakers also tend
to mirror their counterparts to build rapport (Navarretta
et al., 2016). This phenomenon is illustrated in Figure 7.
Here, Pa is frustrated over her long term unemployment
and seeks encouragement (u1, u3). Pb, however, is pre-
occupied and replies sarcastically (u4). This enrages Pa to
appropriate an angry response (u6). In this dialogue, self-
dependencies are evident in Pb, who does not deviate from
his nonchalant behavior. Pa, however, gets sentimentally
influenced by Pb. Modeling self and inter-personal relation-

ships and dependencies may also depend on the topic of the
conversation as well as various other factors like argument
structure, interlocutors personality, intents, viewpoints on
the conversation, attitude towards each other, and so on.
Hence, analyzing all these factors is key for a true self
and inter-personal dependency modeling that can lead to
enriched context understanding.

The contextual information can come from both local
and distant conversational history. As opposed to the local
context, distant context often plays a lesser important role
in sentiment analysis of conversations. Distant contextual
information is useful mostly in the scenarios when a speaker
refers to earlier utterances spoken by any of the speakers in
the conversational history.

The usefulness of context is more prevalent in classifying
short utterances, like yeah, okay, no, that can express different
sentiment depending on the context and discourse of the di-
alogue. The examples in Figure 8 explain this phenomenon.
The sentiment expressed by the same utterance “Yeah” in
both these examples differ from each other and can only be
inferred from the context.

Leveraging such contextual clues is a difficult task. Mem-
ory networks, RNNs, and attention mechanisms have been
used in previous works, e.g., HRLCE (Huang et al., 2019a) or
DialogueRNN (Majumder et al., 2019), to grasp information
from the context. However, these models fail to explain the
situations where contextual information is needed. Hence,
finding contextualized conversational utterance representa-
tions is an active area of research.

3.3.3 User, Cultural, and Situational Context
Sentiment also depends on the user, cultural, and situational
context.

Individuals have subtle ways of expressing emotions
and sentiments. For instance, some individuals are more
sarcastic than others. For such cases, the usage of certain
words would vary depending on if they are being sarcastic.
Let’s consider this example, Pa ∶ The order has been cancelled.,
Pb ∶ This is great!. If Pb is a sarcastic person, then his
response would express negative emotion to the order being
canceled through the word great. On the other hand, Pb’s
response, great, could be taken literally if the canceled order
is beneficial to Pb (perhaps Pb cannot afford the product
he ordered). As necessary background information is often
missing from the conversations, speaker profiling based on
preceding utterances often yields improved results.

The underlying emotion of the same word can vary from
one person to another. E.g., the word okay can bear different
sentiment intensity and polarity depending on the speaker’s
character. This incites the need to do user profiling for fine-
grained sentiment analysis, which is a necessary task for
e-commerce product review understanding.

Understanding sentiment also requires cultural and sit-
uational awareness. A hot and sunny weather can be treated
as a good weather in USA but certainly not in Singapore.
Eating ham could be accepted in one religion and prohibited
by another.

A basic sentiment analysis system that only relies on
distributed word representations and deep learning frame-
works are susceptible to these examples if they do not
encompass rudimentary contextual information.
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What a tragedy :(

Yeah

Person A Person B

(a) (b)

Person A

Wow! So Beautiful :)

Yeah

Person B

Fig. 8: Role of context in sentiment analysis in conversation.

3.3.4 Role of Commonsense Knowledge in Sentiment
Analysis

In layman’s term, commonsense knowledge consists of facts
that all human beings are expected to know. Due to this
characteristic, humans tend to ignore expressing common-
sense knowledge explicitly. As a result, word embeddings
trained on the human-written text do not encode such triv-
ial yet important knowledge that can potentially improve
language understanding. The distillation of commonsense
knowledge, thus, has become a new trend in modern NLP
research. We show one such example in the Fig. 9 which
illustrates the latent commonsense concepts that humans
easily infer or discover given a situation. In particular, the
present scenario informs that David is a good cook and will
be making pasta for some people. Based on this information,
commonsense can be employed to infer related events such
as, dough for the pasta would be available, people would
eat food (pasta), the pasta is expected to be good (David
is good cook), etc. These inferences would enhance the text
representation with many more concepts that can be utilized
by neural systems in diverse downstream tasks.

In the context of sentiment analysis, utilizing common-
sense for associating aspects with their sentiments can be
highly beneficial for this task. Commonsense knowledge
graphs connect the aspects to various sentiment-bearing
concepts via semantic links (Ma et al., 2018). Additionally,
semantic links between words can be utilized to mine
associations between the opinion target and the opinion-
bearing word. What is the best way to grasp commonsense
knowledge is still an open research question.

Commonsense knowledge is also required to understand
implicit sentiment of the sentences that do not accommodate
any explicit sentiment marker. E.g., the sentiment of the
speaker in this sentence, “We have not seen the sun since
last week” is negative as not catching the sight of the sun
for a long time is generally treated as a negative event in
our society. A system not adhering to this commonsense
knowledge would fail to detect the underlying sentiment of
such sentences correctly.

With the advent of commonsense modeling algorithms
such as Comet (Bosselut et al., 2019), we think, there will
be a new wave of research focusing on the role of common-
sense knowledge in sentiment analysis in the near future.

David is a good cook. 

He will be making pasta for us today.

dough_available people_eat

good_pasta

Fig. 9: An illustration of commonsense reasoning and infer-
ence.

3.4 Sentiment Reasoning

Apart from exploring the what, we should also explore
the who and why. Here, the who detects the entity whose
sentiment is being determined, whereas why reveals the
stimulus/reason for the sentiment.

3.4.1 Who? The Opinion Holder

While analyzing opinionated text, it is often important to
know the opinion holder. In most of the cases, the opinion
holder is the person who spoke/wrote the sentence. Yet,
there can be situations where the opinion holder is an
entity (or entities) mentioned in the text (Mohammad, 2017).
Consider the following two lines of opinionated text:

a. The movie was too slow and boring.
b. Stella found the movie to be slow and boring.

In both the sentences above, the sentiment attached to the
movie is negative. However, the opinion holder for the first
sentence is the speaker while in the second sentence it is
Stella. The task could be further complex with the need to
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map varied usage of the same entity term (e.g. Jonathan,
John) or the use of pronouns (he, she, they) (Liu, 2012).

Many works have studied the task of opinion-holder
identification – a subtask of opinion extraction (opinion
holder, opinion phrase, and opinion target identification).
These works include approaches that use named-entity
recognition (Kim & Hovy, 2004), parsing and ranking can-
didates (Kim & Hovy, 2006), semantic role labeling (Wie-
gand & Ruppenhofer, 2015), structured prediction using
CRFs (Choi et al., 2006), multi-tasking (Yang & Cardie, 2013),
amongst others. The MPQA corpus (Deng & Wiebe, 2015)
provided supervised annotations for this task. However,
with respect to deep learning approaches, this topic has been
understudied (Zhang et al., 2019; Quan et al., 2019).

3.4.2 Why? The Sentiment Stimulus

The majority of the sentiment analysis research works to
date are about classifying contents into positive, negative
and neutral. This oversimplification of the sentiment anal-
ysis task has resulted in the saturation of any major break-
through. The future research in sentiment analysis should
focus on what drives a person to express positive or negative
sentiment on a topic or aspect.

To reason about a particular sentiment of an opinion-
holder, it is important to understand the target of the senti-
ment (Deng & Wiebe, 2014), and whether there are implica-
tions of holding such sentiment. For instance, when stating
“I am sorry that John Doe went to prison.”, understanding
the the target of the negative sentiment is ”John Doe goes
to prison”, and knowing that ”go to prison” has negative
implications on the actor John Doe, it implies positive
sentiment toward John Doe.6 Moreover, it is important to
understand what caused the sentiment. Li & Hovy (2017)
discuss two possible reasons that give arise to opinions.
Firstly, an opinion-holder might have an emotional bias to-
wards the entity/topic in question. Secondly, the sentiment
could be borne out of mental (dis)satisfaction towards a goal
achievement.

The ability to reason is necessary for any explainable
AI system. In the context of sentiment analysis, it is often
desired to understand the cause of an expressed sentiment
by the speaker. E.g, in a review on a smartphone, the speaker
might dislike it because the battery drains so fast. While it
is important to detect the negative sentiment expressed on
battery, digging into the detail that causes this sentiment is
also of prime importance (Liu, 2012). Till date, there is not
much work exploring this aspect of the sentiment analysis
research.

Grasping the cause of sentiment is also very important in
dialogue systems. As an example, we can refer to Figure 10,
Joey expresses anger once he ascertains Chandler’s deception
in the previous utterance.

It is hard to define a taxonomy or tagset for the reason-
ing of both emotions and sentiments. At present, there is
no available dataset which contains such rich annotations.
Building such dataset would enable future dialogue systems
to frame meaningful argumentation logic and discourse
structure, taking one step closer to human-like conversation.

6. Example provided by Jan Wiebe (2016), personal communication.

3.5 Domain Adaptation

Most of the state-of-the-art sentiment analysis models enjoy
the privilege of having in-domain training datasets. How-
ever, this is not a viable scenario as curating large amounts
of training data for every domain is impractical. Domain
adaptation in sentiment analysis solves this problem by
learning the characteristics of the unseen domain. Sentiment
classification, in fact, is known to be sensitive towards
domains as mode of expressing opinions across domains
vary. Also, valence of affective words may vary based on
different domains (Liu, 2012).

Diverse approaches have been proposed for cross-
domain sentiment analysis. One line of work models
domain-dependent word embeddings (Sarma et al., 2018;
Shi et al., 2018; K Sarma et al., 2019) or domain-specific sen-
timent lexicons (Hamilton et al., 2016), while others attempt
to learn representations based on either co-occurrences
of domain-specific with domain-independent terms (piv-
ots) (Blitzer et al., 2007; Pan et al., 2010; Ziser & Reichart,
2018; Sharma et al., 2018) or shared representations using
deep networks (Glorot et al., 2011).

One of the major breakthroughs in domain adaption
research employs adversarial learning that trains to fool a
domain discriminator by learning domain-invariant repre-
sentations (Ganin et al., 2016). In this work, the authors
utilize bag of words as the input features to the network.
Incorporating bag of words features limits the network to
get access to any external knowledge about the unseen
words of the target domain. Hence, the performance im-
provement can be completely attributed to the efficacy of the
adversarial network. However, in recent works, researchers
tend to utilize distributed word representations such as
Glove, BERT. These representations, aka word embeddings,
are usually trained on huge open-domain corpora and
consequently contain domain invariant information. Future
research should explain whether the gain in domain adap-
tation performance comes from these word embeddings or
the core network architecture.

In summary, the works in domain adaptation lean to-
wards outshining the state of the art on benchmark datasets.
What remains to be seen is the interpretability of these
methods. Although some of the works claim to learn the
domain-dependent sentiment orientation of the words dur-
ing domain invariant training, there is barely any well-
defined analysis to validate such claims.

3.5.1 Use of External Knowledge

The key idea that most of the existing works encapsulate
is to learn domain-invariant shared representations as a
means to domain adaptation. While global or contextual
word embeddings have shown their efficacy in modeling
domain-invariant and specific representations, it might be a
good idea to couple these embeddings with multi-relational
external knowledge graphs for domain adaptation. Multi-
relation knowledge graphs represent semantic relations be-
tween concepts. Hence, they can contain complementary
information over the word embeddings, such as Glove,
since these embeddings are not trained on explicit se-
mantic relations. Semantic knowledge graphs can establish
relationships between domain-specific concepts of several
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1) You liked it? You 
really liked it?

2) Oh, yeah!

3) Which part 
exactly?

4) The whole thing! 
Can we go?

5) What about the 
scene with the 

kangaroo?

6) I was surprised to 
see a kangaroo in a 

world war epic.

7) You fell asleep!

8) Don’t go,

I’m sorry.

Surprise 
(Positive)

Neutral 
(Neutral)

Neutral 
(Neutral)

Anger 
(Negative)
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ia
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Joy 
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Neutral 
(Neutral)

Surprise 
(Negative)

Sadness 
(Negative)

Emotion 
(Sentiment) :

Fig. 10: Sentiment cause analysis.

domains using domain-general concepts – providing vital
information that can be exploited for domain adaptation.
One such example is presented in Fig. 11. Researchers are
encouraged to read these early works (Alam et al., 2018;
Xiang et al., 2010) on exploiting external knowledge for
domain adaptation.
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graphics 
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computer 
graphic
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RelatedTo
Synonym
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RelatedTo UsedFor

RelatedTo

Fig. 11: Domain-general term graphic bridges the semantic
knowledge between domain specific terms in Electronics,
Books and DVD.

3.5.2 Scaling Up to Many Domains

Most of the present works in this area use the setup of a
source and target domain pair for training. Although appeal-
ing, this setup requires retraining as and when the target
domain changes. The recent literature in domain adaptation
goes beyond single-source-target (Zhao et al., 2018) to multi-
source and multi-target (Gholami et al., 2020b,a) training.
However, in sentiment analysis, these setups have not been
fully explored and deserve more attention (Wu & Huang,
2016).

3.6 Multilingual Sentiment Analysis
Majority of the research work on sentiment analysis has
been conducted using English datasets. However, the ad-
vent of social media platforms has made multilingual con-
tent available via platforms such as Facebook and Twitter.
Consequently, there is a recent surge in works with diverse
languages (Dashtipour et al., 2016). The NLP community, in
general, is now also vocal to promote research on languages
other than English.7

In the context of sentiment analysis, despite the recent
surge in multilingual sentiment analysis, several directions
need more traction:

3.6.1 Language Specific Lexicons
Today’s rule-based sentiment analysis system, such as
Vader, works great for the English language, thanks to the
availability of resources like sentiment lexicons. For other
languages such as Hindi, French, Arabic, not many well-
curated lexicons are available.

3.6.2 Sentiment Analysis of Code-Mixed Data
In many cultures, people on social media post content that
are a mix of multiple languages (Lal et al., 2019; Guptha
et al., 2020; Gambäck & Das, 2016). For example, “Itna izzat
diye aapne mujhe !!! Tears of joy. :( :(”, in this sentence,
the bold text is in Hindi with roman orthography and the
rest is in English. Code-mixing poses a significant challenge
to the rule- and deep learning-based methods. A possible
future work to combat this challenge would be to develop
language models on code-mixed data. How and where to
mix languages are a person’s own choice, which is one of
the main hardships. Another critical challenge associated
with this task is to identify the deep compositional semantic

7. Because of a now widely known statement made by Professor
Emily M.Bender on Twitter, we now use the term #BenderRule to require
that the language addressed by research projects by explicitly stated,
even when that language is English https://bit.ly/3aIqS0C

https://bit.ly/3aIqS0C


Poria et al., BENEATH THE TIP OF THE ICEBERG: CURRENT CHALLENGES AND NEW DIRECTIONS IN SENTIMENT ANALYSIS RESEARCH 13

Chandler : 
Oh my god! You almost gave me 
a heart attack!

Utterance 

• Text : suggests fear or anger.

• Audio : animated tone

• Video : smirk, no sign of anxiety

1)

Sheldon : 
Its just a privilege to watch your 
mind at work.

• Text : suggests a compliment.

• Audio : neutral tone. 

• Video : straight face.

2)

Fig. 12: Incongruent modalities in sarcasm present in the
MUStARD dataset (Castro et al., 2019).

that lies in the code mixed data. Unfortunately, only a little
research has been carried out on this topic (Lal et al., 2019).

3.7 Sarcasm Analysis
The study of sarcasm analysis is highly integral to the
development of sentiment analysis due to its prevalence in
opinionated text (Maynard & Greenwood, 2014). Detecting
sarcasm is highly challenging due to the figurative nature of
text, which is accompanied by nuances and implicit mean-
ings (Jorgensen et al., 1984). Over recent years, this field
of research has established itself as an important problem
in NLP with many works proposing different solutions to
address this task (Joshi et al., 2017b). Broadly, the main
contributions have emerged from the speech and text com-
munity. In speech, existing works leverage different signals
such as prosodic cues (Bryant, 2010; Woodland & Voyer,
2011), acoustic features including low-level descriptors and
spectral features (Cheang & Pell, 2008). Whereas in textual
systems, traditional approaches consider rule-based (Khattri
et al., 2015) or statistical patterns (González-Ibáñez et al.,
2011b), stylistic patterns (Tsur et al., 2010), incongruity (Joshi
et al., 2015; Tay et al., 2018a), situational disparity (Riloff
et al., 2013), and hashtags (Maynard & Greenwood, 2014).
While stylistic patterns, incongruity, and valence shifters are
some of the ways that humans use to express sarcasm, it is
also highly contextual. In addition, sarcasm also depends on
a person’s personality, intellect and the ability to reason over
commonsense. In the literature, these aspects of sarcasm
remain under-explored.

3.7.1 Leveraging Context in Sarcasm Detection
Although the research for sarcasm analysis has primarily
dealt with analyzing the sentence at hand, recent trends
have started to acquire contextual understanding by looking
beyond the text.

User Profiling and Conversational Context: Two
types of contextual information have been explored for
providing additional cues to detect sarcasm: authorial con-
text and conversational context. Leveraging authorial con-
text delves with analyzing the author’s sarcastic tendencies

(user profiling) by looking at their historical and meta
data (Bamman & Smith, 2015). Similarly, the conversational
context uses the additional information acquired from sur-
rounding utterances to determine whether a sentence is
sarcastic (Ghosh et al., 2018). It is often found that sarcasm
is apparent only when put into context over what was
mentioned earlier. For example, when tasked to identify
whether the sentence He sure played very well is sarcastic, it
is imperative to look at prior statements in the conversation
to reveal facts (The team lost yesterday) or gather information
about the speakers sincerity in making the current statement
(I never imagined he would be gone in the first minute).

Given this contextual dependency, the question remains
– how can we model context efficiently? The most popular ap-
proaches are based on sequential models e.g., LSTM (Poria
et al., 2017) and doc2vec (Hazarika et al., 2018a). However,
the results reported in these papers show only a minor im-
provement under the contextual setting. The quest for better
contextual modeling is thus open – one that can explicitly
understand facts and incongruity across sentences. These
models are also not interpretable; hence, they fail to explain
when and how they rely on the context.

Multimodal Context: Apart from gathering essen-
tial cues from the author and conversational context, we
also identify multimodal signals to be important for sarcasm
detection. Sarcasm is often expressed without linguistic
markers, and instead, by using verbal and non-verbal cues.
Change of tone, overemphasis on words, straight face, are
some such cues that indicate sarcasm. There have been
very few works that adopt multimodal strategies to deter-
mine sarcasm (Schifanella et al., 2016). Castro et al. (2019)
recently released a multimodal sarcasm detection dataset
that takes conversational context into account. Other works
that consider multimodality focus on sarcasm perceived by
the reader/audience. These works utilize textual features
along with cognitive features such as gaze-behavior of read-
ers (Mishra et al., 2016), electro/magneto-encephalographic
(EEG/MEG) signals (Filik et al., 2014; Thompson et al.,
2016). Figure 12 presents two cases where sarcasm is ex-
pressed through the incongruity between modalities. In the
first case, the language modality indicates fear or anger.
In contrast, the facial modality lacks any visible sign of
anxiety that would agree with the textual modality. In the
second case, the text is indicative of a compliment, but
the vocal tonality and facial expressions show indifference.
In both cases, the incongruity between modalities acts as
a strong indicator of sarcasm. The only publicly available
multimodal sarcasm detection dataset, MUStARD, contains
only 500 odd instances, posing a significant challenge to
training deep networks on this dataset.

3.7.2 Annotation Challenges: Intended vs. Perceived Sar-
casm
Sarcasm is a highly subjective tool and poses significant
challenges in curating annotations for supervised datasets.
This difficulty is particularly evident in perceived sarcasm,
where human annotators are employed to label text as sar-
castic or not. Sarcasm recognition is known to be a difficult
task for humans due to its reliance on pragmatic factors
such as common ground (Clark, 1996). This difficulty is
also observed through the low annotator agreements across
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the datasets curated for perceived sarcasm (González-Ibáñez
et al., 2011a; Castro et al., 2019). To combat such perceptual
subjectivity, recent approaches in emotion analysis utilize
perceptual uncertainty in their modeling (Zhang et al., 2018b;
Gui et al., 2017; Han et al., 2017).

In our experience of curating a multimodal sarcasm
detection dataset (Castro et al., 2019), we observed poor
annotation quality, which occurred mainly due to the hard-
ships associated with this task. Hovy et al. (2013) noticed
that people undertaking such tasks remotely online are
often guilty of spamming, or providing careless or random
responses.

One solution to this problem is to rely on self annotated
data collection. While convenient, obtaining labeled data
from hashtags has been found to introduce both noises
(incorrectly-labeled examples) and bias (only certain forms
of sarcasm are likely to be tagged (Davidov et al., 2010), and
predominantly by certain types of Twitter users (Bamman &
Smith, 2015)).

Recently, Oprea & Magdy (2019) proposed the iSarcasm
dataset, which annotates labels by the original writers for
the sarcastic posts. This kind of annotation is promising as
it circumvents the issues mentioned above while capturing
the intended sarcasm. To combat annotations for perceived
sarcasm, Best-Worst Scaling (MaxDiff) (Kiritchenko & Mo-
hammad, 2016c) could be employed to alleviate the effect of
subjectivity in annotations.

3.7.3 Target Identification in Sarcastic Text
Identifying the target of ridicule within a sarcastic text –
a new concept recently introduced by Joshi et al. (2018) –
has important applications. It can aid chat-based systems
better understand user frustration, and help aspect-based
sentiment analysis tasks to assign the sarcastic intent with
the correct target in general. Though similar, there are
differences from the vanilla aspect extraction task (Section
3.1) as the text might contain multiple aspects/entities with
only a subset being a sarcastic target (Patro et al., 2019).
When expressing sarcasm, people tend not to use the target
of ridicule explicitly, which makes this task immensely
challenging to combat.

3.7.4 Style Transfer between Sarcastic and Literal Meaning
Translations between sarcastic and literal forms of text has
many applications. We discuss about some of the promising
directions in this topic below.

Figurative to Literal Meaning Conversion: Converting a
sentence from its figurative meaning to its honest and literal
form is an exciting application. It involves taking a sarcastic
sentence such as “I loved sweating under the sun the whole
day” to “I hated sweating under the sun the whole day”. It has
the potential to aid opinion mining, sentiment analysis, and
summarization systems. These systems are often trained to
analyze the literal semantics, and such a conversation would
allow for accurate processing. Present approaches include
converting a full sentence using monolingual machine trans-
lation techniques (Peled & Reichart, 2017), and also word-
level analysis, where target words are disambiguated into
their sarcastic or literal meaning (Ghosh et al., 2015). This
application could also help in 1) performing data augmen-
tation and 2) generating adversarial examples as both the

forms (sarcastic and literal) convey the same meaning but
with different lexical forms.

Generating Sarcasm from Literal Meaning: The ability to
generate sarcastic sentences is an important yardstick in the
development of Natural Language Generation (NLG). The
goal of building socially-relevant and engaging interactive
systems demand such creativity. Sarcastic content genera-
tion can also be beneficial for content/media generation that
find applications in fields like advertisements. Mishra et al.
(2019b) recently proposed a modular approach to generate
sarcastic text from negative sentiment-aware scenarios. End-
to-end counterparts to this approach have not been well
studied yet. Also, most of the works here rely on a particular
type of sarcasm – one which involves incongruities within
the sentence. The generation of other flavors of sarcasm
(as mentioned before) has not been yet studied. Detailed
research on this topic with an emphasis on end-to-end
learning is demanding yet lucrative.

3.8 Sentiment-Aware Natural Language Generation
(NLG)

Language generation is considered one of the major compo-
nents of the field of NLP. Historically, the focus of statistical
language models has been to create syntactically coher-
ent text using architectures such as n-grams models (Stol-
cke, 2002) or auto-regressive recurrent architectures (Ben-
gio et al., 2003; Mikolov et al., 2010; Sundermeyer et al.,
2012). These generative models have important applica-
tions in areas including representation learning, dialogue
systems, amongst others. However, present-day models are
not trained to produce affective content that can emulate
human communication. Such abilities are desirable in many
applications such as comment/review generation (Dong
et al., 2017), and emotional chatbots (Zhou et al., 2018).

Early efforts in this direction included works that either
focused on related topics such as personality-conditioned
text generation (Mairesse & Walker, 2007) or pattern-
based approaches for the generation of emotional sen-
tences (Keshtkar & Inkpen, 2011). These works were signif-
icantly pipe-lined with specific modules for sentence struc-
ture and content planning, followed by surface realization.
Such sequential modules allowed constraints to be defined
based on personality/emotional traits, which were mapped
to sentential parameters that include sentence length, vocab-
ulary usage, or part-of-speech (POS) dependencies. Need-
less to say, such efforts, though well-defined, are not scalable
to general scenarios and cross-domain settings.

3.8.1 Conditional Generative Models
We, human beings, count on several variables such as emo-
tion, sentiment, prior assumptions, intent, or personality to
participate in dialogues and monologues. In other words,
these variables control the language that we generate.
Hence, it is an overstatement to claim that a vanilla seq2seq
framework can generate near perfect natural language. In
recent trends, conditional generative models have been
developed to address this task. Conditioning on attributes
such as sentiment can be approached in several ways. One
way to achieve this is by learning disentangled representations,
where the key idea is to separate the textual content from
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Fig. 13: Dyadic conversation–between person X and Y–are governed by interactions between several latent factors. Emotions
are a crucial component in this generative process. In the illustration, P represents the personality of the speaker; S
represents speaker-state; I denotes the intent of the speaker; E refers to the speaker’s emotional/sentiment-aware state,
and U refers to the observed utterance. Speaker personality and the topic always condition upon the variables. At turn t,
the speaker conceives several pragmatic concepts such as argumentation logic, viewpoint, and inter-personal relationship
- which we collectively represent using the speaker-state S (Hovy, 1987). Next, the intent I of the speaker gets formulated
based on the current speaker-state and previous intent of the same speaker (at t − 2). These two factors influence the
emotional feeling of the speaker, which finally manifests as the spoken utterance.

high-level attributes such as sentiment and tense in the
hidden latent code. Present approaches utilize generative
models such as VAEs (Hu et al., 2017), GANs (Wang & Wan,
2018) or Seq2Seq models (Radford et al., 2017). Learning
disentangled representations is presently an open area of
research. Enforcing independence of factors in the latent
representation and presenting quantitative metrics to eval-
uate the factored hidden code are some of the challenges
associated with these models.

An alternate method is to pose the problem as an
attribute-to-text translation task (Dong et al., 2017; Zang &
Wan, 2017). In this setup, desired attributes are encoded
into hidden states which condition upon a decoder tasked to
generate the desired text. The attributes could include user’s
preferences (including historical text), descriptive phrases
(e.g. product description for reviews), and sentiment. Sim-
ilar to general translation tasks, this approach demands
parallel data and raises challenges in generalization, such
as cross-domain generalization. Moreover, the attributes
might not be available in desired formats. As mentioned,
attributes might be embedded in conversational histories
which would require sophisticated NLU capabilities similar
to the ones used in task-oriented dialogue bots. They might
also be in the form of structured data, such as Wikipedia
tables or knowledge graphs, tasked to be translated into
textual descriptions, i.e., data-to-text – an open area of
research (Mishra et al., 2019a).

3.8.2 Sentiment-Aware Dialogue Generation
The area of controlled-text has also percolated into dialogue
systems. The aim here is to equip emotional intelligence
into these systems to improve user interest and engage-
ment (Partala & Surakka, 2004; Prendinger & Ishizuka,
2005). Two key functionalities are important to achieve this
goal (Hasegawa et al., 2013):

1) Given a user-query, anticipate the best emo-
tional/sentiment response adhering to social rules
of conversations.

2) Generate the response eliciting that emotion/sentiment.
Present works in this field either approach these two

sub-problems independently (Ghosh et al., 2017) or in a
joint manner (Gu et al., 2019). The proposed models range
over various approaches, which include affective language
models (Ghosh et al., 2017) or seq2seq models that are
customized to generate emotionally-conditioned text (Zhou
et al., 2018; Asghar et al., 2018). Kong et al. (2019) take
an adversarial approach to generate sentiment-aware re-
sponses in the dialogue setup conditioned on sentiment
labels. For a brief review of some of the recent works in
this area, available corpora and evaluation metrics, please
refer to Pamungkas (2019).

Despite the recent surge of interest in this application,
there remains significant work to be done to achieve robust
emotional dialogue models. Upon trying various emotional
response generation models such as ECM (Zhou et al.,
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2018), we surmise, these models lack the ability of conver-
sational emotion recognition and tend to generate generic,
emotionally incoherent responses. Better emotion modeling
is required to improve contextual emotional understand-
ing (Hazarika et al., 2018b), followed by emotional anticipa-
tion strategies for the response generation. These strategies
could be optimized to steer the conversation towards a
particular emotion (Lubis et al., 2018) or be flexible by
proposing appropriate emotional categories. For the gen-
eration stage, the quest for better text with diversity and
coherence and fine-grained control over emotional intensity
are still open problems. Also, automatic evaluation is a noto-
rious problem that has plagued all applications of dialogue
models.

To this end, following the work by Hovy (1987), we il-
lustrate a sentiment and emotion-aware dialogue generation
framework in Figure 13 that can be considered as the basis
of future research. The model incorporates several cognitive
variables i.e., intent, sentiment and interlocutor’s latent state
for coherent dialogue generation.

3.8.3 Sentiment-Aware Style Transfer
Style transfer of sentiment is a new area of research. It
focuses on flipping the sentiment of sentences by deleting
or inserting new sentiment bearing words. E.g., to change
the sentiment of ”The chicken was delicious”, we need to find
a replacement of the word delicious that carries negative
sentiment.

Recent methods on sentiment-aware style transfer at-
tempt to disentangle sentiment bearing contents from other
non-sentiment bearing parts in the text by relying on rule-
based (Li et al., 2018) and adversarial learning-based (John
et al., 2019) techniques.

Adversarial learning-based methods to sentiment style
transfer suffer from the lack of available parallel corpora
which opens the door to a potential future work. Some
initial works, such as (Shen et al., 2017), address non-parallel
style transfer, albeit with strict model assumptions. We also
think this research area should be studied together with the
ALSA (aspect-level sentiment analysis) research to learn the
association between topics/aspects and sentiment words.
Considering the example above, learning better association
between topics/aspects and opinionated words should aid
a system to substitute delicious with unpalatable instead of
another negative word rude.

3.9 Bias in Sentiment Analysis Systems

Exploring bias in machine learning has gained much trac-
tion recently. Studying bias in sentiment analysis is crucial,
as the derived commercial systems are often shared by
diverse demographics. Sentiment analysis systems are often
used in such areas as healthcare, which deals with sensitive
topics like counseling. Customer calls and marketing leads,
from various backgrounds, are often screened for sentiment
cues, and major decision-making is driven by the acquired
analytics. Thus, understanding the presence of bias, espe-
cially for demographics, is critical. Unfortunately, the field
is at its nascent stage and has received minimal attention.
However, some developments have been observed in this
area, which opens up numerous research directions. There

can be different types of bias, such as gender, race, age, etc.
For the sake of brevity, in the following discussions, we use
examples of gender bias.

3.9.1 Identifying Causes of Bias in Sentiment Analysis Sys-
tems
Bias can be introduced into the sentiment analysis models
through three main sources:

1) Bias in word embeddings: Word embeddings are often
trained on publicly available sources of text, such as
Wikipedia. However, a survey by Collier & Bear (2012)
found that less than 15% of contributions to Wikipedia
come from women. Therefore, the resultant word em-
beddings would naturally under-represent women’s
point of view.

2) Bias in the model architecture: Sentiment-analysis systems
often use meta information, such as gender identifiers
and indicators of demographics that include age, race,
nationality, and geographical cues. Twitter sentiment
analysis is one such application where conditioning
on these variables is prevalent (Mitchell et al., 2013;
Vosoughi et al., 2015; Volkova et al., 2013). Though
helpful, such design choices can often lead to bias from
theses conditioned variables. A cogent solution to this
issue could be to develop culture-specific sentiment
analysis models rather than creating a generic one,
albeit computationally inefficient.

3) Bias in the training data: There are different scenarios
where a sentiment-analysis system can inherit bias
from its training data. These include highly frequent
co-occurrence of a sentiment phrase with a particular
gender — for example, woman co-occurring with nasty
—, over- or under-representation of a particular gender
within the training samples, strong correlation between
a particular demographic and sentiment label — for
instance, samples from female subjects frequently be-
longing to positive sentiment category.

An author’s stylistic sense of writing can also be one
of the many sources of bias in sentiment systems. E.g., one
person uses strong sentiment words to express a positive
opinion but prefers to use milder sentiment words in ex-
hibiting negative opinions. A similar trend might prevail
across races and genders, thereby making the task of identi-
fying bias and de-biasing difficult.

3.9.2 Evaluating Bias
Recent works present corpora that curate examples, specif-
ically to evaluate the existence of bias. The Equity Eval-
uation Corpus (EEC) (Kiritchenko & Mohammad, 2018)
is one such example that focuses on finding gender and
racial bias. The sentences in this corpus are generated us-
ing simple templates, such as <Person> made me feel
<emotional state word>. While this is a good step,
the work is limited to exploring bias that is related only
to gender and race. Moreover, the templates utilized to
create the examples might be too simplistic and identifying
such biases and de-biasing them might be relatively easy.
Future work should design more complex cases that cover
a wider range of scenarios. Challenge appears when we
have scenarios like John told Monica that she lost her mental
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stability vs. John told Peter that he lost his mental stability. If
the sentiment polarity in either of these two sentences is
classified significantly different from the other, that would
indicate a likely gender bias issue.

3.9.3 De-biasing

The primary approach to de-biasing is to perturb a text with
word substitution to generate counterfactual cases in the
training data. These generated instances can then be used to
regularize the learning of the model, either by constraining
the embedding spaces to be invariant to the perturbations or
minimizing the difference in predictions between both the
correct and perturbed instances. While recent approaches,
such as (Huang et al., 2019b), have proposed these methods
in language models, another direction could be to mask out
bias contributing terms during training. However, such a
method presents its own challenges since masking might
cause semantic gaps.

In general, we observe that while many works demon-
strate or discuss the existence of bias, and also propose
bias detection techniques, there is a shortage of works that
propose de-biasing approaches.

Apart from the traditional bias in models, bias can also
exist at a higher level when making research choices. A
simple example is the tendency of the community to resort
to English-based corpora, primarily due to the notion of
increased popularity and wider acceptance. Such trends
diminish the research growth of marginalized topics and
study of arguably more interesting languages – a gap which
widens through time (Hovy & Spruit, 2016). As highlighted
in Section 3.6, as a community, we should make conscious
choices to help in the equality of under-represented commu-
nities within NLP and Sentiment Analysis.

4 CONCLUSION

Sentiment analysis is often regarded as a simple classifica-
tion task to categorize contents into positive, negative, and
neutral sentiments. In contrast, the task of sentiment analy-
sis is highly complex and governed by multiple variables
like human motives, intents, contextual nuances. Disap-
pointingly, these aspects of sentiment analysis remain either
un- or under-explored.

Through this paper, we strove to diverge from the idea
that sentiment analysis, as a field of research, has satu-
rated. We argued against this fallacy by highlighting several
open problems spanning across subtasks under the um-
brella of sentiment analysis, such as aspect level sentiment
analysis, sarcasm analysis, multimodal sentiment analysis,
sentiment-aware dialogue generation, and others. Our goal
was to debunk, through examples, the common misconcep-
tions associated with sentiment analysis and shed light on
several future research directions. We hope this work would
help reinvigorate researchers and students to fall in love
with this immensely interesting and exciting field, again.
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