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Deep Learning and its applications have cascaded impactful research and development with a diverse
range of modalities present in the real-world data. More recently, this has enhanced research interests
in the intersection of the Vision and Language arena with its numerous applications and fast-paced
growth. In this paper, we present a detailed overview of the latest trends in research pertaining to visual
and language modalities. We look at its applications in their task formulations and how to solve various

problems related to semantic perception and content generation. We also address task-specific trends,
along with their evaluation strategies and upcoming challenges. Moreover, we shed some light on
multi-disciplinary patterns and insights that have emerged in the recent past, directing this field towards
more modular and transparent intelligent systems. This survey identifies key trends gravitating recent
literature in VisLang research and attempts to unearth directions that the field is heading towards.

1. Introduction

Computer Vision and Natural Language Processing have
witnessed an impactful surge and development with the over-
all advancements in Artificial Intelligence. Independently,
we have even surpassed human-level performance over tasks
such as image classification, segmentation, object detection
in vision and sentiment analysis, named-entity recognition
in language research in supervised, unsupervised, and semi-
supervised manners. With such powerful algorithms and
comprehensive capabilities of autonomous systems comes
the need to merge knowledge domains and achieve cross-
modal compatibilities to innovate wholesome, intelligent sys-
tems. More often than not, we perceive real-world data and
activities in multimodal forms involving multiple sources
of information, especially at the intersection of vision and
language. This has triggered Visual-Language (VisLang) re-
search with more complex tasks and the need for interactive
as well as interpretable systems. VisLang research has not
only bridged the gap between discrete areas of interest, but
also put forth the challenges and shortcomings of individual
methods.

The integration of vision and language has been on var-
ious fronts through tasks such as classification, generation,
retrieval, and navigation. This has surfaced various chal-
lenging tasks such as Vision-Language Navigation for the
autonomous functioning of robots with a comprehensive un-
derstanding of its environment, Visual Captioning for gener-
ating rich and meaningful language descriptions from visual
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Figure 1: A summary of VisLang tasks based on various under-
lying key characteristics.

information, and many others. The field of Vision, Language,
and VisLang research is undergoing rapid changes in trends
and fast-paced progress. This makes it essential to bring to-
gether the recent trends and advances in VisLang research
and take note of the current cutting-edge methodologies on
multiple fronts. With this, we aim to identify and highlight
the current challenges, critical gaps, and emerging directions
of future scope that can help stimulate productive research.

Scope of the survey. This survey throws light on the fresh
instigations in the sphere of VisLang research, enumerating
the miscellaneous tasks that form the foundation of current
multimodal research followed by the peculiar trends within
each task. While prior studies have endeavored to perform
similar analyses, our survey transcends them in task-specific
and task-general inclinations in terms of architectures, learn-
ing procedures, and evaluation techniques. We also supple-
ment our study with future challenges that lie in our path
to developing self-sufficient VisLang systems that possess
interpretable perception capabilities coupled with natural lan-
guage apprehension, followed by future research direction in
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this particular discipline.

Related Surveys. Multiple recent works have delved into
overviewing this field of research. These surveys provide an
outline of numerous VisLang tasks and extensively detail the
established datasets and metrics used for these tasks [81, 218].
Therefore, instead of focusing on similar attributes, we chan-
nel our attention to trends of specific tasks in terms of encoder-
decoder architectures, attention mechanisms, learning tech-
niques, amongst others. We also provide a brief overview
of the foregoing VisLang metrics while describing the evo-
lution of novel metrics and their significance in developing
interpretable models with higher-order cognition capabilities,
which prior surveys miss out.

Kafle et al. [145] points the readers towards the several
challenges like dataset bias, robustness, and spurious cor-
relations prevalent in VisLang research that could hinder
their practical applications. While this work raises pertinent
questions over current systems, it fails to invest in the con-
temporary evolution in these tasks that open new doors for
eradication of these challenges. Additionally, Mei et al. [212]
categorized VisLang tasks as either a transition from vision
to language or language to vision. Under the bracket of vi-
sion to language, the authors provide detailed analysis of
the task of visual captioning, providing insights into various
encoder-decoder frameworks prevalent in such applications,
while under language to vision, they recount the works that
have focused on visual content creation. Although this work
provides an intuitive element to VisLang tasks, it fails to
consider other VisLang tasks that we illustrate and that to-
gether contribute to the development of extensive cognition
and linguistic capabilities.

Baltrusaitis et al. [16] also provides a comprehensive
overview of distillation and association of data from multi-
ple modalities in terms of representation, translation, align-
ment, fusion, and co-learning trends. Our survey extends
this abstraction by revealing the task-specific nature of these
categorizations besides the ones overlooked by this work.
Furthermore, while this survey covers a more general multi-
modal machine learning setting, we meticulously emphasize
on VisLang tasks. Moreover, this work is a timely update
of the latest trends in VisLang research, which have evolved
more actively in the past two years.

Organization of the survey. In this survey, we begin by
listing the diverse set of VisLang tasks alongside their math-
ematical problem formulations and categorization as per the
fundamental problem at hand (Section 2). This is followed
by a detailed overview of task-specific trends established
in recent VisLang literature (Section 3). We also empha-
size the trends regarding architectural formulation involving
attention frameworks, transformer networks, muti-modal rep-
resentation learning, and fusion techniques of the learned
representations (Section 4). Furthermore, we demonstrate
the evolving nature of imminent domains of interest in the
VisLang community, including interpretability and explain-
ability, multi-task learning, domain adaptation, and adver-

Figure 2: Overview of Generation Tasks.
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sarial attacks. Lastly, we conclude with profuse challenges
still prevalent in this active area of research, accompanied
by the guidelines for future work gearing towards self-reliant
VisLang systems (Section 6).

2. Tasks

A diverse range of tasks requires a coalesced and co-
operative knowledge of both language and vision. Here, we
discuss the fundamental details, goals, and trends of such
tasks and how they have evolved in the recent past. Table 1
characterizes the various VisLang tasks on more fine-grained
characteristics such as them being classification or genera-
tion problems, where there is a necessity for interpretable
justifications, if the output is textual or not, and if a one-to-
many mapping exists in an ideal and trivial sense. Modality
transition distinctively refers to those tasks where the set of
input and output modalities are disjoint, i.e. a given input in
a particular modality needs to be represented in a completely
different modality in the output space. Visual Question An-
swering, Visual Commonsense Reasoning, Visual Caption-
ing, and Visual Generation correspond to generative models
and methods, whereas the rest of them are majorly focused on
perception tasks. Tasks like Visual Language Navigation im-
prove upon the generalized as well as specific understanding
of machines towards vision and language, without explicitly
mapping none to the target space. We broadly categorize
some of the tasks based on the underlying problem at hand,
i.e., generation, classification, retrieval or others.

2.1. Generation Tasks
We describe prominent generation tasks in VisLang, as
illustrated in Figure 2.

Visual Question Answering (VQA) VQA represents the
task of correctly providing an answer to a question given a
visual input (image/video). For accurate performance, it is
essential to infer logical entailments from the image (or video)
based on the posed question.

For VQA, the dataset D generally consists of visual input-
question-answer triplets wherein the i*# triplet is represented
by < 1;,9;, A; >. We depict the set of all unique images by

V= {Vj};zl, set of all unique questions by Q = {Qj}:ir
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and the set of all unique answers by A = {A; };’: |» Where
Ry, Ao, and n, represent the number of elements in these
sets respectively. The core task involves learning a mapping
function f that returns an answer for a given question with
respect to the visual input, i.e., fti = f(V;,Q;). The aim
is to learn an optimal function f maximizing the likelihood
between the original answers A and generated ones A. The
output of the learnt mapping f could either belong to a set
of possible answers in which case we refer this task format
as MCQ, or could be arbitrary in nature depending on the
question in which we can refer to as free-form. We regard the
more generalized free-form VQA as a generation task, while
MCQ VQA as a classification task where the model predicts
the most suitable answer from a pool of choices.

Visual Captioning (VC) Visual Captioning is the task of
generating syntactically and semantically appropriate descrip-
tions for a given visual (image or video) input in an automated
fashion. Generating explanatory and relevant captions for
a visual input requires not only a rich linguistic knowledge
but also a coherent understanding of the entities, scenes, and
their interactions present in the visual input.
Mathematically speaking, given adataset D = {< V|, C; >

, <V, Cy >, ..., < V,,C, >} with n data samples, the i dat-
apoint < V,, C; > represents the tuple of visual input V; and
its corresponding ground-truth caption C;. We learn a repre-
sentation for the input to semantically encode the required
information. The task is to use this information to generate a
caption éi by maximising its likelihood with the ground-truth
description. The generated description is a sequence of words
(say k), is illustrated as C; = {c!,c?, c?, ...cX}. Each token
can be generated auto-regressively using sequential models,
such as RNN or LSTM, based on the previous tokens.

Visual Commonsense Reasoning (VCR) Visual Com-
monsense Reasoning is the task of inferring cognitive un-
derstanding and commonsense information by a machine on
seeing an image. It requires the machine to correctly an-
swer questions posed about the image along with relevant
justification.

Broadly, the task of VCR requires to learn a mapping
from the input data distribution {< 7,9 >, < 1,,9, >
,.n. < 1,,9, >}, where T; and Q; depict the image and the
corresponding query respectively, to the output comprising of
answers and corresponding rationales namely, {< A;, R; >}.
The rationales ensure that the right answers are obtained
for the right reasons. The output distribution is commonly
framed as answers to multiple-choice questions with expla-
nations. Therefore, VCR can be broken down into a two-fold
task that involves question answering (pick the best answer
out of a pool of prospective answers to an MCQ question)
and answer justification (provide a rationale behind the given
correct answer).

Natural Language for Visual Reasoning (NLVR). NLVR is
a subtask of the broader category of VCR confining to the
classification paradigm (as depicted in Figure 3). In a broader
generalization, Natural Language for Visual Reasoning refers

Figure 3: Overview of Classification Tasks.
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to the entailment problem, wherein the task is to determine
whether a statement regarding the input image is frue or
false. The task formulation can be represented as learning
a mapping from the input space comprising of images and
queries, {< 1,,Q; >,< 1,,9, >,..,< 1,,9Q, >} to the
output space < T'rue, False > determining the truth value of
an associated statement to each data point. It usually varies
from VQA due to longer text sequences covering a diverse
spectrum of language phenomenon.

Visual Generation (VG). Visual Generation is the task
of generating visual output (image or video) from a given
textual input. It often requires a sound understanding of the
semantic information and accordingly generating relevant
and context-rich coherent visual formations.

Given an input textual sequence of tokens, 7 = {tl.1 s tl.z, tf? 1,
the aim is to output corresponding visual V capturing enti-
ties and scene illustrations as described in the text. It is a
challenge to capture local and global context while synthe-
sizing visualizations accurately. The output can be either an
image or a video, based on various input forms being text
descriptions, dialogues, or scene explanations.

2.2. Classification Tasks
We discuss specifics for classification tasks in VisLang,
as illustrated in Figure 3.

Multimodal Affective Computing (MAC). Affective com-
puting is the task of automated recognition of affective phe-
nomenon causing or arising from emotions. Multimodal
affective computing involves combining cues from multiple
signals such as text, audio, video, and images depicting ex-
pressions, gestures, etc., in order to interpret the associated
affective activity, similar to how humans explicate emotions.

Given a dataset D = {< &,7T] >, < &, T, >,..,<
&,, T, >}, where & and 7; denote a visual expression in
the form of an image or video, and an associated text descrip-
tion respectively. Multimodal affective computing involves
learning mappings from multimodal input signals to the de-
cision space of different affective phenomena. Fusion of
information from more than one signals to achieve consensus
towards an emotion label provides human-level cognition and
more reliable intelligent systems.
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Figure 4: Overview of Retrieval Tasks.

Language Encoder

_____ =

Visual Retrieval

A baseball player
wearing a white jersey
in the middle of the
field.

Textual Input

Visual Output

Figure 5: Overview of Other Tasks.

! ----- ] @_@ ‘
Visual Encod .
Visual Input isual Emcoder @ >
Move forward 2m, take
U-turn, move forward > |
2m; turn left, move .
forward 1m. Agent
Textual Input Language Encoder
= Textual Output
—[0) E >
2
Visual Input Visual Encode = o
o
@ FRENCH:
ENGLISH: A = K
baseball player in |y > Un joueur de
e v baseball en maillot
white jersey.
blanc.
Textual Input Language Encoder
Vision-Language Navigation [ Multimodal Machine Translation

2.3. Retrieval Tasks
We describe the task of Visual Retrieval, as illustrated in
Figure 4.

Visual Retrieval. The task of text-image retrieval is a cross-
modal task involving the understanding of both language and
vision domains with appropriate matching strategies. The
aim is to fetch the top-most relevant visuals from a larger
pool of visuals as per the text description.

Given a large database of n visual datapoints D = {V}, V,, ...

for any text description, say 7, we want to retrieve the top-
most relevant images or videos from the database D as per
T . This is a cross-modal task due to text-based retrieval as
opposed to other conventional approaches based on shape,
texture, and color. This is popularly used in several search
engines, domain-specific searches, and context-based image
retrieval design systems.

2.4. Other Tasks

We describe the tasks of Vision-Language Navigation
and Multimodal Machine Translation, as illustrated in Figure
5.

Vision-Language Navigation (VLN). Vision-Language
Navigation is a grounding natural language task of an agent’s
locomotion as it sees and explores the real-world dynamics
based on linguistic instructions. This is often viewed as a
task of sequence-to-sequence transcoding, similar to VQA.
However, there is a clear dichotomy between the two. VLN
usually has much longer sequences, and the dynamics of the
problem vary entirely because of it being a real-time evolving
task.

Generally, for a given input sequence £ = {I,[5,...,1,},
denoting an instruction with n tokens and o; representing
the initial frame of reference, the agent aims to learn appro-
priate action sequences {a,, a,, ..., a, } following L to obtain
the next frame of reference o, and continually so until the
desired navigation task is complete. The key challenge lies
in comprehending the environment and making confident
decisions while exploring.

Multimodal Machine Translation (MMT). Multimodal
Machine Translation is a two-fold task of translation and de-
scription generation. It involves translating a description
from one language to another with additional information
from other modalities, say video or audio.

Considering w.r.t to Visual Multimodal Machine Trans-
lation, we assume the additional modality as an image or a
video. Given a dataset containing » data points, D = {<
V.71 >, <V, T, >,...,.<V,, T, >}, where V, and T; repre-
sent the visual input and the associated task description re-
spectively, the aim is to learn a mapping to translated textual
descriptions {7',,7’,,...,7',} in another language. The
added input information is targeted to remove ambiguities
that may arise in straightforward machine text translation and
help retain the context of the text descriptions, considering
the supplementary visual features. Multimodal representa-
tion spaces aid in robust latent representations complement-
ing inherent semantic information held by visual and lingual
embeddings individually.

3. Task-Specific Trends in VisLang Research

In this section, we look at latest papers published in con-
cerned tasks and analyze emerging trends within the tasks.
Figure 6 presents a rough estimate of the research trends

cross various VisLang tasks in the past two years. As seen
1fi ‘the figure, VC and VQA remain the most popular tasks. It
is encouraging to see VCR emerge midway in the proportions
suggesting an interest in the community towards reasoning-
based tasks. We also provide a further breakdown of subtasks
in VQA and VC in terms of subtasks that fall under them.
While there have been a number of specific subtasks that have
surfaced, typical tasks with images as their visual modality
are most prevalent. The percentages depicted in figure are
calculated based on the frequency of the papers published in
these domains in recent literature.

3.1. Visual Captioning
Image Captioning (IC). Image Captioning [329, 48] comes
under the multimodal visual captioning task wherein the in-
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Figure 6: Paper trends of recent VisLang literature (previous 2 years). In this figure, we
collate the task of NLVR with VCR due to its similar goals.

put to the model is an image. Recent advancements in the
Image Captioning (IC) task have led to varied routes and
applications for the same.

Images and captions can be correlated using relationship
graphs for capturing underlying semantic information [281].
Such graphs can then be leveraged for generating novel cap-
tions in a weakly supervised setting. The identified relations
are utilized to build coherence-aware models [6], capable of
generating diverse captions based on different relation set-
tings. Another IC task that has gained popularity is Dense
Image Captioning. It involves generating multiple caption de-
scriptions based on different potential regions in images [ 148].
Following up from previous paradigms is the task of Relation-
based Image Captioning (RIC) wherein multiple caption de-
scriptions are generated as per different relations identified
amongst diverse regions in images [153].

Image Paragraph Captioning, as pursued by [161], gen-
erates detailed paragraphs describing the images at a finer
level.

Video Captioning (VC). Another visual captioning appli-

cation involves generating descriptions for video sequences [334,

38]. Analogous to Dense Image Captioning is the task of
Dense Video Captioning [333, 410] wherein all the events in
a video are described while generating captions.
Generating captions for videos in both sentence as well
as paragraph formats has been pursued as a separate extended
task, Video Paragraph Captioning (VPC) task [381].
Another approach referred to as Audio-Visual Video Cap-
tioning [311], combines multiple input modalities i.e. simul-
taneous audio and video signals to generate text-descriptions.

Others. The broad set of applications of IC has led to a
diverse set of novel auxiliary tasks. One such task is Visual
Text Correction which focuses on replacing the incorrect
words in textual descriptions of videos or images with cor-
rect ones as per the visual content [211]. Similar tasks have
been performed under Image Caption Editing (ICE) [269].
Other efforts have been made for tasks such as Instructional
Video Captioning (IPC) [278]; captioning narrations of in-
structional videos, Stylized Image Captioning (SIC) [210]; for

generating diverse image captions relating to specific seman-
tic styles, Image Captioning using Scene Graphs (ICG) [45];
for captioning using scene graph representations of images,
Group Captioning (GC) [186]; generating collaborative cap-
tions for a set of grouped images (albums) and News Image
Captioning (NIC) [313]; generating captions for news arti-
cle with associated images. Several other works highlight
the visual captioning task with additional meta-data such as
ratings and Part-of-Speech (POS), see Table 1.

Trends in VC. Visual captioning has been one of the most
popular VisLang tasks that has gathered the attention of a
wide-ranging community in developing models with strong
cognition capabilities and intrinsic language understanding
(see Table 1). Recently, an outburst of papers have focused
on enhancing the perception capabilities of such models by
bestowing supplemental sources of inference in the form of
meta-data as illustrated in 3.1. Stylized captioning [210] is
gaining momentum as an indispensable extension of VC that
combines the idea of style-transfer (or feature swapping) from
the vision domain with the setup of generating captions based
on a visual input. Other vision-inspired ideas like representa-
tion learning and disentanglement have found immense range
of applications in this field of research where developing
robust representation can enhance the ability of a model to
generate better captions. Despite the rapid developments in
various attentional VC models, the bottom-up and top-down
(up-down) attention [9] remains to be the most commonly
applied framework in VC systems in present times, due to its
ability to attend more naturally at the level of the objects and
other principal regions.

A large portion of visual captioning approaches that tend
to form individual encodings for visual and language input
deploy an object-detection network. This network identifies
the set of all possible entities present in the visual input and
draws correlation between the ones identified by the language
models in the textual input. In recent works, the most predom-
inantly utilized object detection model was Faster RCNN [93]
followed by YOLO [261] and RCNN [93] owing to its highly
accurate predictions coupled with fast computations. Alter-
native approaches that do not employ object detection models
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Table 1
Latest research in IC

Ref. Task (Dataset) Visual Encoder Language Model Attention
[281] | IC (MSCOCO) Faster RCNN Graph Parser/LSTM Soft, Adaptive
[6] SIC (Clue) ResNet-50 GloVe Multi-head
[171] | VPC (ActivityNet Captions, YouCookll) CNN Transformer Multi-head
[103] | IC (MSCOCO) Faster RCNN GloVe, LSTM Self
[400] | VC (MSVD, MSR-VTT, VATEX) 2DCNN, 3DCNN, GCN LSTM Temporal, Spatial
[45] ICG (VisG, MSCOCO) MR-GCN LSTM Graph-based
[405] | SIC (SentiCap and FlickrStyle10K) Scene Graph LSTM Top-down, Visual
[186] gtcoc(f‘g;;i‘l’gﬁz)' Captions, ResNet50 LSTM Self
[412] | IC (Flickr30k, MSCOCO) Faster RCNN LSTM, GRU Up-Down
[269] | ICE (MSCOCO) RCNN LSTM SCMA
[60] IC (MSCOCO) Faster RCNN GloVe Cross, Self
[313] | NIC (NYTimes800k, GoodNews) ResNet-152, MTCNN, YOLOv3 RoBERTa Multi-head
[229] | IC (MSR-VTT, MSVD) ReN et L " Transformer, GCN | Temporal, Spatial
[335] | IC (MSCOCO) RCNN LSTM Recalled-words

ICwH (Conceptual Captions,
[273] | Caption-Quality, Conceptual FaétIZL(TS/'i\ls'i\i’nGXIglgle BERT -

Captions Challenge T2)
[403] | IC (Conceptual Captions) CNN, Transformer Transformer Self
[278] | IVC (YouCookll) ResNet-34, Transformer LSTM, BERT Self
[77] IC (MSCOCO, Flickr30k) ResNet-152 RNN -
[130] | IC (MSCOCO) Faster RCNN LSTM B
[114] | IC (MSCOCO) Faster RCNN Transformer Self
[37] IC (MSCOCO) CNN LSTM -
[331] | VCwP (MSR-VTT, MSVD) CNN LSTM Soft
[123] | VCwP (MSR-VTT, MSVD, ActivityNet) CNN ConvCap Soft
[91] IC (MSCOCO) CNN MaBi-LSTM Cross-modal

Faster RCNN, Mask RCNN,
[375] | IC (MSCOCO) Tree-LSTM, GCN-LSTM LSTM Up-down
[193] | ICwP (MSCOCO) Faster RCNN LSTM Textual, Visual
[367] | IC (MSCOCO, VisG) CNN, Faster RCNN RNN Object, Attribute,
elation, Self

[12] IC (MSCOCO) Sequencial VAE LSTM -

IC (MSCOCO, Flickr30k,
(166] Conceptual Captions) CNN GRU, GloVe -
[150] | IC (MSCOCO) Faster RCNN LSTM Reflective
[326] | IC (MSCOCO) ResNet, Faster RCNN SCG -
[257] | ICwA (ActivityNet) 3DCNN, C3D GRU RNN Crossing
[99] IC (VisG, MSCOCO) Faster RCNN LSTM Graph
[277] | ICwH** (MSCOCO) CNN RNN, CNN Up-down
[366] | IC (MSCOCO) CNN RNN Up-down
[67] ICwP (MSCOCO) VGG-16, Faster RCNN LSTM, CNN -
[80] IC (MSCOCO) CNN LSTM -
[377] | IC (VisG) Faster RCNN LSTM -
[153] | RIC (VisG Relationship v1.2) VGG16 LSTM -
[59] IC (Flickr30k, MSCOCO) Faster RCNN LSTM Adaptive
[88] IC (MSCOCO) CNN RNN, LSTM Up-down
[256] | IC (VisG, MSCOCO) Faster RCNN LSTM Look Back
[408] | IC (MSCOCO, ImageNet) CNN LSTM Up-down
[72] | IC (0OC, MSCOCO) ResNet-101 LSTM CC°' Visual,

ontext-aware

[329] | IC (Pascal, MSCOCO, Flickr30k) CNN RNN -
[359] | IC (Flickr9k, Flickr30k, MSCOCO) CNN RNN Soft, Hard
[374] | IC (MSCOCO, ImageNet) FCN, VGG-16 LSTM -
[210] | SIC (MSCOCO, Styled Text) CNN GRU Up-down
[46] SIC (MSCOCO, FlickrStyle10k) CNN LSTM Style, Self
[209] | SIC (MSCOCO) VGG CNN, RNN RNN, LSTM -
[282] | SIC (Flickr30k, MSCOCO) ResNet-152, FC Transformer, FC Up-down
[265] | IC (MSCOCO) ResNet-101, FC LSTM Hard
[373] | IC (MSCOCO) CNN, RNN RNN Hard, Soft

for encapsulating visual object entities, often utilize a deep
convolution network like various variants of ResNet [112]
(16, 50, 101 or 152) or VGGNet [284] (16) in order to encode
the image onto a lower-dimensional manifold for extraction
of relevant visual features.

Visual captioning, being one of the most primitive fields
in the VisLang domain, has a wide variety of benchmark
datasets. The most commonly utilized dataset for this par-
ticular task remains MSCOCO [192] that consists of images
of complex scenes with common everyday objects in their
natural context. However, due to the numerous concerns

raised over the interpretability of popular VC models, novel
datasets that require complex reasoning and cognition capa-
bilities have arisen in recent literature that have contributed
significantly to the transparency, fairness, and explainability
of VC systems (refer Section 5.2).

3.2. Visual Question Answering. (VQA)
The VQA task has had a history of diverse applications
and proposed architectures to achieve them.

Image Question Answering (IQA). The IQA task re-
quires inferring semantic and abstract concepts in images
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to perform question-answering with the acquired knowledge
with high fidelity. Several techniques have been explored
to achieve benchmark results for IQA with attention-based
methods emphasizing focus on the vital features. This is
achieved either using a co-attention model for VQA with at-
tention over both image and question inputs to answer where
to look? and what to look for? simultaneously [198], or using
stacked attention networks in order to infer correct answers
using multiple queries progressively [373]. Knowledge-based
methods [352] have also been explored where external knowl-
edge apart from the content available in the image is utilized
so as to understand the scene representations deeply and to be
able to answer a wide and deep set of related real-world ques-
tions. Memory networks, which leverages attention mecha-
nisms along with memory modules to achieve benchmark
performances, and can be generalized to other modalities
apart from images, such as text, have also been used for the
task of VQA [356]. Another dimension to IQA involves in-
terpreting figures, plots, and visualizations and answering
relevant questions based on the data visualization [36, 144],
referred to as Figure Question Answering. Attention tech-
niques and bimodal embeddings have commonly been used
to infer plots and charts as inputs. Chou et al. [58] introduced
anovel task of 360° Visual Question Answering (360VQA)
wherein the inputs are images with a 360° field of view.
Such an input representation provides a complete scenic un-
derstanding of the entities in the image but also demands
models with spatially-sound reasoning abilities to leverage
the extra information available.

Video Question Answering (ViQA). ViQA involves an-
swering questions based on temporal data in the form of
video sequences. With the limited availability of annotated
resources, this has been pursued using online videos along
with available descriptions to obtain question-answer (q&a)
pairs in an automated fashion instead of manual annota-
tions [390]. These q&a pairs are used in training the ViQA
model. Tapaswi et al. [307] introduced a novel MovieQA
dataset on similar lines, to perform question-answering on
the events occurring in movie videos. It aims to compre-
hend a multimodal video-text input signal for visual question-
answering tasks. Apart from free-form answers, several ef-
forts have been made to attain fill-in-the-blank type of in-
ference over the knowledge of events described in video in-
puts [414]. Tt used recurrent neural networks in an encoder-
decoder setting.

Visual Question Generation (VQG). The VQG task re-
quires generating natural questions given the images. It de-
mands a more intensive subject-capturing of the context to
generate a relevant and diverse set of questions such as ones
with answer categories belonging to a specific bracket like
spatial, count, object, color, attribute etc. Whereas other
tasks like IQA, tend output answers on a broader level like bi-
nary answers to questions. Informative generations have been
synthesized using structured constraints such as triplet loss
with multimodal features [237]. Other architectural variants

like VAE-LSTM hybrids help synthesize largeset of ques-
tions, for a given image [138], or in a dual task setting of
question-answering [368, 182]. A paradigm translation has
been posed from neural network-based approaches to rein-
forcement learning settings [397] for VQG task, with optimal
rewards based on informativeness of generated questions.

Visual Dialog Visual dialogue comprises of VQA in di-
alogue (VQAD:I). and VQG in dialogue (VOQGDi) wherein
the main goal is to automate machine conversations about
images with humans. Probabilistic approaches [236] have
been undertaken to ensure minimum uncertainty of gener-
ated dialogues given the history of the conversation. Sim-
ilar to other vision-language tasks, attention-based meth-
ods [226, 147, 272] have helped capture multimodal ref-
erences in the dialogue stream. Dialog systems have lever-
aged generative modeling [137, 208] using both question
and answering tasks coherently. Moreover, Das et al. [65]
and Zhang et al. [398] proposed the Visual Dialog task in a
deep reinforcement learning setup using co-operative agents.

Others. A variety of other task extensions with specific
areas of interest have emerged from VQA. As a hybrid of
VQA and dialogue systems, VQA in Dialogue (VQADi) and
VOG in Dialogue (VQGDi) have surfaced interest [170, 101].
As a broader scale application, VQAwCo poses the prob-
lem of visual question answering based on a collection of
videos or photos [187]. Other variants involve leveraging
subsidiary information in the form of metadata such as VQA
with paragraph descriptions (VQAwWP) [154], image cap-
tions (VQAwWC) [409] and human visual or textual inputs
(VQAwH) [350].

Trends in VQA. The task of VQA has grown by several
folds in the past decade wherein the development of attention
frameworks promoting enhanced comprehension proficien-
cies have been a fundamental component of modern VQA
systems. As a result, explainability-motivated frameworks
like hierarchical and graph-based attentions have found great
applications in VisLang research. Co-attention has recently
evolved as the most commonly deployed attention frame-
work due to its potential of associating key objects in the
visual inputs (identified via image encoders described in Sec-
tion 4.1) to textual entities in the question. Owing to the
recent developments in various language generation tasks,
the VQA community is drifting toward a generalized form
of free-form question-answering, while diverging from the
simpler form of MCQ answers. While VQA v2 [2] remains
to be the repeatedly operated benchmark dataset, an abundant
set of datasets that focus on very specific sub-tasks of VQA
like 360° images VQA [58], visual dialogue question an-
swering [64], VQA by reading text in images i.e. by optical
character recognition (OCR) [215], efc. have come to light.
In terms of the visual encoder of VQA systems, similar
to the task of VC, object detection models are common in
identifying the essential entities in the input and correlating
them with the ones obtained in the language input. A number
of approaches have also tried to maintain the simplicity in
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Table 2
Latest research in VQA

Ref. Task (Dataset) Visual Encoder Language Model Task Format
[369] | ViQA (TVQA, Pororo) Faster RCNN, BERT BERT MCQ
[57] | 360VQA (360° VQA Dataset) CNN GRU MCQ
[235] | IQA (VQA-X Dataset) CNN LSTM MCQ
[36] FQA (LEAF-QA, FigureQA, DVQA) MaskRCNN, Oracle/OCR LSTM MCQ
[144] | FQA (FigureQA, DVQA) CNN, FC LSTM MCQ
[409] xgﬁv;C()gMSCOCO, Flickr30k, Faster RCNN Transformer, BERT MCQ
[90] ViQA (KnowlT VQA) ResNet-50, OD, FRN BERT MCQ
[348] | VQAwWC (VQA 2.0) CNN GRU MCQ
[131] | IQA (VQA 2.0) Faster RCNN GloVe, ELMo MCQ
[154] | VQAWP (VisG Dataset) Faster RCNN LSTM MCQ
[71] IQA (TDIUC, VQA2.0, Visual7W) FPN Detector GRU MCQ
[89] IQA (VQA 2.0, TDIUC) RCNN Transformer MCQ
[174] | 1QA (VQA 2.0, VQA-CP v2) Faster RCNN Bi-RNN, GRU MCQ
[21] | 1QA (VQA 2.0, VizWiz) CNN GRU MCQ
[349] | VQAWH (VQA-CP v2) Faster RCNN GRU MCQ
[384] | IQA (VQA 2.0) Faster RCNN LSTM, GloVe+ MCQ
[162] | VQG (VQA 2.0) CNN LSTM Free Form
[320] | VQG (VQA 2.0) CNN LSTM Free Form
[305] | IQA (VisG, VQA 2.0) Visual Attention Module Bi-TreeLSTM MCQ
[24] | 1QA (VQA 2.0, VQA-CP v2, TDIUC) Faster RCNN GRU MCQ
[101] | VQADI (Visual Dialogue v1) CNN LSTM Free Form
[40] | IQA (VQA-CP v2) Faster RCNN LSTM MCQ
[170] | VQGDi (GuessWhich Task) RNN Free Form
[9] IQA (VQA) Faster RCNN LSTM MCQ
[84] IQA (VQA, Visual7TW) CNN WE, LSTM MCQ
[198] | IQA (VQA, COCO-QA) VGGNet/ResNet LSTM MCQ
[151] | IQA (MM IMDB, FOOD101, V-SLNI) ResNet, CNN Bi-Transformer MCQ
[358] | IQA (DAQUAR, VQA) GoogleLeNet Word Embeddings MCQ
IQA (DAQUAR-ALL, DAQUAR-

[371] REDUCED, COCO-QA, VQA) CNN CNN/LSTM MCQ
[187] | VQAwCo (MemexQA, MovieQA) CNN LSTM MCQ
[312] | IQA (Visual Madlibs) VGG-16, Faster RCNN, SSD word2vec MCQ

their architecture by using fundamental convolutional layers
with or without fully connected layers at the end of it for
encoding the visual inputs [21, 162, 320, 144]. Pre-trained
transformer-based embeddings have certainly boosted the
performance of models that aim at generating individual em-
beddings for each modality that are later fused to obtain a
hybrid latent code.

Table 2 depicts the relevant recent literature that have
focused on the application of VQA using diverse visual en-
coders and language models.

3.3. Visual Commonsense Reasoning (VCR)

The task of VCR [389] was introduced to develop higher-
order cognition in vision systems and commonsense reason-
ing of the world so that they can provide justifications to
their answers. Encodings produced by BERT-inspired trans-
formers models proved to implicitly establish relationships
between entities present in the multimodal sources of data
aiding the process of reasoning. BERT embeddings were
directly used [158] guided by attention for the task of VCR.
Multimodal extensions of BERT like VILBERT [196], Vi-
sualBERT [176] and VL-BERT [291] also justified the
efficacy of such embeddings in developing sophisticated un-
derstanding required for reasoning over a wide domain of
questions. On similar lines, the joint vision and text embed-
dings space was learnt using large-scale pre-training [49]
for a variety of multiplex multimodal tasks, including VCR.
For constructing such joint representations that capture com-

plex relationships between objects present in the visual scene,
knowledge from scene graphs was incorporated while pre-
training their model [380]. Adversarial training on multiple
modalities for developing these joint embeddings spaces has
also been studied in [85]. Their model was trained via a
two-step framework that includes task-agnostic pre-training,
which is followed by task-specific fine-tuning.

Trends in VCR. The growing focus on reasoning based
systems have not only led to instigation of various relevant
datasets but also popularized the idea of visual reasoning (see
Table 3). VCR [389], often viewed through the lens of an
extension of the VQA task, is slowly and steadily gaining
extensive popularity in recent literature owing to its contri-
bution in designing socially relevant interpretable models.
Most VCR systems have focused on utilizing embeddings
generated from pre-trained transformer networks (detailed
in Section 4.1) to obtain high-quality latent representations
for visual and language modalities. This evolution has also
prompted casuality, counterfactual inference and contrastive
learning to flourish in these domains of interest.

The subtask of VCR, NLVR usually varies from VQA
due to longer text sequences covering a diverse spectrum
of language phenomenon. Most common visual reasoning
approaches target at mimicking the human brain cognition of
identifying the broader concepts in the visual input, making
it easier to apprehend implicit relationships between different
entities with respect to these concepts. The recently intro-
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Table 3

Latest research in Visual Commonsense Reasoning. CTM:
Contextual Voting Module, CC: Conceptual Captions, KV: Key
Value

Ref. Dataset Visual Encoder LaMnguage
odel
CC, VCR, VQA 2.0, Faster RCNN,
(291 | Refcoco+ ResNet-101 Transformer
[407] CLEVR, NLVR CNN, GRU KV Mem. Net
[406] | VQAv2, NLVR Faster RCNN BERT
[172] I(:zl(lzck\r/l’»%i' MSCOoco, Faster RCNN Transformer
[110] | coG - 1DCNN/LSTM
[24] XSA'I\'I?)II%(YQA_CP Faster RCNN GRU
[279] | CLEVR TbD-net LSTM
[382] | VCR CTM, ResNet-50 BERT
[191] | VCR CNN BERT
[347] | VCR CNN, GCN BERT, LSTM
VQA 2.0, Transformer,
[196] | RefCOCO+, Faster RCNN Co-TRM '
VCR, Flickr30k
MSCOCO, CC,
VisG, SBU Captions,
[49] Flickr-30k, VQA 2.0, RCNN, FC Transformer
NLVR, RefCOCO+
[389] | VCR CNN BERT

duced NLVR task [293] focuses on how visual theoretic
reasoning can be translated to answering multiple linguistic
phenomenon. This has been further explored with bidirec-
tional matching [302] benefitting in end-to-end frameworks
with attention based settings. Such approaches have been
extended to more generalized settings to recognize unseen
object images as well [106]. This generalization is achieved
via learning surplus meta-concept learners capturing two-way
relationships between visual concepts and meta-concepts (for
e.g., properties of objects like color and shape). Other sup-
plementary NLVR settings involve using descriptions for
pair-level images as input [294].

3.4. Multimodal Machine Translation (MMT)

MMT is a task wherein visual data acts as a supplement
for fostering the primary task of translating descriptions from
one language to another. Related works [26] emphasize the
fact that multimodal sources of data tend to enhance the per-
formance of a model when performing machine translation.
Using this principle, attention-based approaches [133] have
been proposed for generating informative multimodal embed-
dings that could be translated by the decoder. Inspired by the
success of multimodal attention for IC, other methods [27]
utilize it for MMT in order to simultaneously focus on the
image and text description. This followed a diverse pool of
Seq2Seq models with attention mechanisms to be introduced
for this task [189, 411, 29].

Trends in MMT. MMT is one of the most primitive Vis-
Lang tasks that has been a source of interest in the community
for a long time, but it has gained escalation in several recent
works focussing on this task (see Table 4). The emergence
of generalizable BERT-based pre-trained latent spaces has
led to a boost in the performance of MMT models over a
wide range of global and regional languages. Similar to VC,

Table 4
Latest research in Multimodal Machine Translation.

Ref. Dataset Visual Encoder | Language Model

[118] | Multi30K ResNet-50 Bi-GRU, GloVe

[365] | Multi30K Faster RCNN RNN

[132] | Multi30K MLP Transformer
Multi30K, .

(30] Comp. Multi30K FC Bi-LSTM

[136] | Multi30K ResNet-50 GloVe
IAPR-TC12, .

[44] | MuoizoR ResNet-152 BILSTM

[292] | Multi30K ResNet-152 Transformer

[119] | Multi30K ResNet-50 Bi-GRU

former datasets like Multi30k [75] are still the most popular
benchmarks for this particular task. However, the growth of
reasoning-oriented models has led to some newer datasets
(such as VATEX [341] and Flickr30-Entities [244]) that
demand higher-level capabilities.

3.5. Multimodal Affective Computing

Multimodal affective computing comes in intuitive to at-
tain human-level accuracy since humans comprehend varied
emotions with an integrated knowledge of sound, visual ex-
pressions and the semantic context of lingual information.
More recently, text and images have been combined to infer
the associated sentiments more adequately [139], similar
to how most social media platforms allow and access in-
formation. A lot of approaches [52, 249] leverage facial
expressions combined with audio or text to learn correlations
between different information types for a fine-grained emo-
tion classification. A great deal of attention has also been
given to the different possibilities of fusing multimodal infor-
mation into purposeful representations. Fusion of multiple
sensory data into a single information channel at the feature-
level [219, 270, 248] has proven to provide high-fidelity
classification for a diverse set of underlying tasks. Several
methods explore the Hidden Markov Models (HMMs) to
model varying levels of correlation in different signal input
for fusion [391, 289].

Diverging from trivial sentiment analysis based on textual
sequences, multimodal affective computing targets on using
manifold cues from differing input signals like visual, audio or
text [251], be it using facial expressions or gait and gestures
or speech (vocal) features. Considering this, several works
have touched upon different sub-aspects of MAC:

Multimodal Sentiment Analysis. Multimodal Sentiment
Analysis majorly focuses on broadly measuring the emotion
on the extremity scales such as positive, negative, neutral
instead of more fine-grained classification based on precise
emotions and opinions. Taking into consideration the inter-
dependencies in multiple utterances [247] of a video along
with multi-kernel learning [246] helps improving perfor-
mance on sentiment classification objectives. Also, a varied
level of strategies are adopted for heterogenous modality
fusion mechanisms. Some of the non-conventional fusion
methods which obtain a boost in the performance, use either
hierarchical fusion, combining only two modalities at any
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individual level [205], or using a tensor-fusion network by
blending different modality representations at a deeper layer
in contrast to early fusion [386] for effectively encapsulating
inter-modal as well as intra-model correlations. Zadeh et al.
[388] introduced a large multimodal emotion recognition and
sentiment analysis dataset along with another hierarchical
fusion technique involving dynamic fusion graphs operating
on different degrees of freedom at each level. For multi-view
sequence learning, with differing modalities as varying views,
Zadeh et al. [387] used gated network along with attention
model to apprehend the heterogeneity.

Affective Computing with Vision-Text. A combination
of textual and visual information is often popularly observed
on social media platforms which usually sees a large incom-
ing flow of data. To assess various such data in the form
of tweets or other social media data, Cai and Xia [28] pro-
posed convolution based networks for separately encoding
unimodal informations and then amalgamating them through
another convolution model. To effectively capture the inter-
dependencies in heterogenous modality spaces, probabilistic
graphical models were employed, along with hyper-graph
models for analysing independent features [140].

Affective Computing with Vision-Text-Audio. Trimodal
features involving visual, textual and acoustic features obtain
optimal performance as compared to individual information
signals. Achieving modality-invariant features with appropri-
ate fusion techniques plays a significant role in using available
information aptly. Fusion could be achieved with either sin-
gle kernel [241] or multiple kernel learning [250]. Using
video data allows to extract three modalities from a single
source of data [248, 283], but at the same time poses an
additional challenge of coherently extracting and segregating
different modalities before processing.

Trends in MAC. The latest trends in multimodal affec-
tive computing span several promising directions (see Table
5). One class of models improve upon tensor-based fusion
methods and attempt to find efficient solutions to otherwise
inefficient process [195, 18]. Recent works, such as Liang
et al. [188] also address parallel, yet significant issues that
include accounting for temporal imperfections in multimodal
time-series data.

Another popular research line is in multimodal represen-
tation learning, which is often either a replacement or a pre-
cursor to multimodal fusion. The former is predominantly
observed in modality-translation based methods that have
the attractive property of robustness against missing modal-
ities [243]. Pushing the goal towards effective multimodal
representations are works like [316, 111] that attempt to
factorize or disentangle modality features in joint spaces. An-
other exciting direction is in learning alignment-independent
methods for multimodal fusion, which alleviates the labor-
intensive process of cross-modal alignment in the ground
truth annotations [317].

Table 5
Latest research in Multimodal Affective Computing (MAC).
Note: FACET is available at https://imotions.com/platform/.

Ref. Dataset Visual Encoder Language Model
[111] :\JAISS'I:'U’\&%SYEI' Facet, LSTM GloVe, BERT
[298] :\él(\)/l%l'cXSSEl’ Facet BERT
[204] :\QI\OASOICI\A/IF?SEI Facet, 3d-CNN GLoVe, CNN
[18] :\QIC\)ASOIC'ZIODM Facet, LSTM GLoVe, LSTM
317 MOSI, MOSEI, Facet, GLoVe,
[317] IEMOCAP Transformer Transformer
[344] | MOSI, IEMOCAP Facet, LSTM GloVe
POM, MOSI,
ICT-MMO
[316] | MOUD, Youtube, EaSCTe,f/l CNN, GloVe
IEMOCAP, SVHN,
MNIST
[202] :\I/IEI(\)/I%'CXI?SEI’ Facet, 3d-CNN GLoVe, CNN
[243] y02§JBLCT_ MMO, Facet GLoVe
[203] :\é'C\)ASOICI\A/I;)SEI Facet, 3d-CNN GLoVe, CNN
[109] | UR_FUNNY OpenFace, LSTM GLoVe, LSTM
Table 6
Latest research in Vision Language Navigation (VLN)
Ref. Dataset Vision Model | Language Model
[122] | FGR2R ResNet-152 LSTM
[379] | R2R Seq2Seq -
[418] | CVDN CNN LSTM
[354] | R2R CNN LSTM
[339] | R2R CNN, LSTM LSTM
108 R2R, CVDN, ResNet Transformer
HANNA
[53] R2R ResNet BiLSTM
[167] | R2R ResNet-152 Pos. Encoding
[413] | R2R LSTM BiLSTM
[83] R2R LSTM LSTM
[179] | R2R LSTM LSTM, GPT
[128] | R2R CNN BiLSTM
[168] | R2R ResNet-152 LSTM
[303] | Matterport3D LSTM BiLSTM
[149] | R2R Seq2Seq LSTM
[200] | R2R ResNet-152 LSTM

3.6. Vision-Language Navigation (VLN)

VLN [10] recently emerged from combining separate
visual-based [214] and language-based [11] navigation tasks.
Several methods have either used self-supervised [338] or
self-correcting [149, 201] strategies to improve path planning
for navigation. Most of the successful attempts at solving
the task of VLN have been inspired by reinforcement learn-
ing [342] and imitation learning [338] in contrast to the
earliest Seq2Seq models [10]. Contrary to discrete settings,
novel approaches focus on improving real-time navigation in
continuous domain 3D environments [160] by identifying
novel objects which were unseen before [254].

Trends in Vision-Language Navigation. With the dy-
namic nature of the task of navigation using language instruc-
tion, a wide variety of works [342, 173] have resorted to
utilizing (deep) reinforcement learning techniques for fab-
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ricating adaptive generalizable models for a range of envi-
ronmental settings. In such approaches, the agent learns to
generate a map of the environment alongside following the
instructions to advance towards the goal by receiving rewards
from the environment. Even contemporary learning-based
techniques like imitation learning have been popularized to
learn to navigate using instructions by mimicking an instruc-
tor’s actions. Despite the rapid growth in VLN, the conven-
tional Room-to-Room (R2R) dataset [10] remains to be the
most sought after benchmark in this task. Table 6 shows the
recent trends in the VLN research.

3.7. Visual Generation
Visual generation has been carried under different task
variations as highlighted under.

Text-to-Image Generation (T2I). The task of generating
high fidelity images from textual descriptions [263] has been
accomplished by utilizing GANs to capture visual concepts
from textual descriptions and then translating them onto im-
ages. StackGANs [395] disintegrated this task of synthesiz-
ing images from descriptions into disjoint steps that first ap-
prehended the rudimentary concepts of the image like shape
and color to form low-resolution images, which were later
used to generate high-resolution images with finer details.
To its further extension, tree-structures are introduced with
multiple generators and discriminators Zhang et al. [396]
arranged together. Utilizing this tree of networks, images
with varying scales are generated from different tree branches
in an unconditional or conditional setting. A fine-grained
image-text matching loss combined with a multimodal atten-
tional GAN architecture, conditions on given text at word
level to generate high-quality images [360]. Additionally,
hierarchical networks with hierarchical-nested adversarial
objective were proven to aid generator training, forming high-
resolution photographic images [401].

Dialogue-to-Image Generation (D2I). Utilizing dialogues

as a supplemental source of contextual information for the
generation of images can lead to the fabrication of mean-
ingful real-looking images. This leads to some novelty in
the task of text-to-image generation by additionally utilizing
dialogues for encapsulating finer details to improve image-
generation [275].

Another active area of research dialogue-to-series-of-
images generation (D2SI) seeks to generate a sequence of
images rather than a single one iteratively, making use of
sequentially appearing texts or feedbacks. This task requires
a deeper understanding of the context and entities detailed
in the text acquired from the previous image output and all
preceding feedbacks [74].

Agent-guided dialogue-to-scene generation (AG-D2S),
another subcategory of D2I, is the task of designing an entire
scene using multi-agent collaboration by interacting with
other entities in the input. Generally, the task is solved by a
collaborative scene construction between two agents wherein
one of them instructs the other by capturing key semantic
and contextual ideas, while the other draws the scene on the

empty canvas [155, 378].

Dialogue-based image editing (DIE) [51] is another task
that aims at sequentially editing images based on the textual
instructions provided by the user, improving the quality of the
image at each step in the process. The model is required to
maintain consistency between the user descriptions provided
and the generated image besides simultaneously modifying
it region-wise in an iterative manner.

Scene Graph/Layout-to-Image Generation. The task
of generating real-world images based on textual instructions
about individual objects and their locations in the image has
been performed by training a GAN conditioned over both
the descriptions as well as the object locations [262]. Some
approaches have also tried to breakdown this process into a
sequence of similar steps. This includes first generating the
overall layout using textual descriptions, and then generating
the images using a separate generator. This generator that
synthesizes the images in a coarse-to-fine manner by generat-
ing bounding boxes for all objects and then refining each of
the objects in them sequentially [121]. Further extensions to
natural language descriptions involve rendering scene graphs
for video synthesis to efficiently capture entity-object rela-
tionships on more complex domains [142] or object-box
layouts [402]. Devoid of GANs, certain approaches generate
scene objects sequentially by attending on previous state of
the generated scene dynamics [301].

Text-to-Video Generation. Generating videos from tex-
tual descriptions enhances the challenge a level up than image
generation for deep generative models due to temporal na-
ture of output and more variable dynamics. To effectively
capture and synthesize features with differing frequencies
in a video, conditional generation helps to segregate static
and dynamic features from text [183]. Another extension
to standard GANs modifies discriminator networks to verify
generated video sequences against correct captions instead
of real/fake, with spatio-temporal convolutions for synthesiz-
ing frames [231]. Hybrid models with variational-recurrent
attention mechanisms also demonstrate high-fidelity genera-
tions [216] with individual frames attended, using LSTMs
for video frame predictions [43].

Trends in VG. With the rapid advancements in GAN-based
architectures eliciting the high fidelity visual generation, the
task of VG has expanded by many folds in the recent literature
(see Table 7). Under the envelop of VG, several particular sub-
tasks like generation of scenes guided by dialogue or human
feedback have surfaced. Whilst principally most approaches
utilize GANs for the generation task, recent furtherance in
VAE-based [321] or flow-based [156] probabilistic gener-
ative models have provided extraordinarily fine details in
visual outputs. These trends open new doors for VG research
to generate high-quality images or videos avoiding the pitfalls
of GAN’s training stability issues.
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Table 7
Latest research in Visual Generation. ConvRM: Convolutional
Recurrent Module

Visual
Ref. Dataset Generator Language Model
[376] | CUB, MSCOCO GAN Bi-LSTM
[178] | MSCOCO GAN Bi-LSTM, LSTM
[255] | CUB, MSCOCO GAN RNN
[207] CIFAR-10, Cl.JB, facades, GAN LSTM
maps, Yosemite, cat—dog
Caltech-UCSD Birds200, .
[416] MSCOCO GAN Bi-LSTM
MultiMNIST, CLEVR,
[117] | yvscoco GAN char-CNN-RNN
[402] | COCO-Stuff, VisG GAN Conv-LSTM
Abstract Scenes, .
[300] MSCOCO Conv-RM BiGRU
CUB, MSCOCO,
[395] Oxford-102 GAN CNN, LSTM
[360] | MSCOCO, CUB GAN BiLSTM

3.8. Visual Retrieval

Most image retrieval works focus on fetching relevant
images for a given textual query, represented by a few spe-
cific keywords describing attributes instead of the elongated
textual descriptions. Such approaches have been widely used
for retrieving products with similar concepts in fashion mar-
kets [107]. Other applications involve image tagging, text-
to-image, and image-to-text retrieval tasks [296] based on
accumulated concepts in the visual and semantic arena. Dong
et al. [73] approached the retrieval task as a cross-media
matching where either images are represented in the textual
space or text is translated to appropriate visual embeddings
to further use matching for relevant retrieval. Similar to this,
several works pose the retrieval problem as a bidirectional
task for sentence-to-image retrieval and vice-versa. In order
to achieve this, more often than not, it is crucial to learn
a shared embedding space for text and visual attributes for
obtaining latent features before retrieval [82, 94, 120].

Many different variations have been proposed to the task
specifics and underlying approaches for retrieval based ob-
jectives. Nagarajan and Grauman [222] separated objects
and attributes while learning latent embeddings, thereby, en-
suring that new attribute-object combinations when encoun-
tered, can be easily understood, instead of being mixed up.
For retrieving similar yet specifically different images from
the database, Vo et al. [330] inputted an image with a text-
query describing necessary changes to be considered from
the present image while searching for other relevant images
for retrieval.

Apart from image retrieval, comes another analog where
retrieval is based on more interactive queries as per user inter-
action [310]. Guo et al. [104] brought forth the novel task of
dialogue-based retrieval where retrieval searches are based
on agent-user interactions, which aided the establishment of
user feedback in loop while retrieving relevant items from
the database.

Trends in VR. Recent works in text-to-visual retrieval tasks
have emphasized the learning of coherent VisLang representa-
tion spaces to obtain precise, meaningful matches (see Table

Table 8

Latest research in Visual Retrieval (VR)

Ref. Dataset Visual Encoder | Language Model

[107] | Fashion200k CNN BOW, word2vec

[76]" | Ms-coco CNN BIiLSTM

[172] | MS-COCO | Faster R-CNN BERT

[181] | MS-COCO Faster R-CNN BERT
MS-COCO, Faster R-CNN, .

(3461 | Flickr30k ResNet-101 BIGRU

8). Two major trends that have recently spanned this entire re-
search area mainly focus on unbiased extraction and feedback
based. As user-feedback has been widely used in product
searches [107], it has played a vital role in improving the
performance in a loop-wise manner. More recently, deep
learning frameworks have shifted the focus more from classic
ranking or matching algorithms to discovering semantic con-
cepts and cues in both textual and visual spaces [107, 157],
either independently or combined.

4. Latest Trends in VisLang Modeling

In this section, we look at the latest papers in the multi-
modal application of VisLang research and observe the key
modeling trends adopted by the papers.

4.1. Multimodal Representation Learning

Multimodal inputs including a visual input (image/video)
and a textual input are either encoded individually to generate
separate representations that are later fused or processed si-
multaneously using a network that directly generates a hybrid
multimodal representation. Here, we focus on a diverse set
of methods with shared multimodal latent space.

Visual Encoders. Visual encoders perform the task of ex-
tracting semantic information about key entities present in the
visual inputs. They encode the input to a lower-dimensional
manifold that captures dominant attributes and forms asso-
ciations between them. This task of concealing complex
visual inputs onto a denser feature space to perform a diverse
range of downstream tasks is an age-old computer vision
technique [318]. Multimodal approaches that form detached
embeddings for visual inputs have often utilized popular im-
age classification-based deep networks like LeNet [169],
VGGNet [284], ResNet [112], or sometimes even a simple
CNN to extract meaningful features from the input. Several
approaches that require identifying key objects in visual input
also employ prevailing deep object detection networks for
generating embeddings that are later processed by further ar-
chitecture. These object detection networks like RCNN [93],
FasterRCNN [264], YOLO [261], etc. return the bound-
ing boxes and the class predictions of the located objects
present in the input, which are later used to correlate them
with similar entities present in the language input as well.

Language Encoders. Frameworks that generate separate
embeddings for each modality often consist of a temporal
model that captures contextual relationships from text using
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vocabulary comprehension capabilities. As discussed in De-
vlin et al. [68], pre-trained language encoders can broadly
be classified into two general categories, namely contextual
and context-free. Context-free representation models like
word2vec [213] and GloVe [240] generate embeddings for
each word irrespective of its usage and surrounding words.
On the other side, contextual representation models encode
each word based on their contextual position in a given text.
Further, we can divide contextual models into unidirectional
and bidirectional. While unidirectional models comprehend
the context of each word from one direction, bidirectional
models examine the context from eithr side. Bidirectional
Transformer networks like [68, 194] pre-trains an encoder
to predict certain masked words, while learning to differen-
tiate between positively and negatively correlated samples
parallelly. Many multimodal systems have also employed
simple temporal models like LSTMs, RNNs, or GRUs for
generating text-based encodings.

Hybrid Representations. While prominent approaches in
recent literature extracted vision and language features before
fusing them, some approaches have also tried to directly em-
bed a combined multimodal embedding from inputs. These
methods obtain their motivation from lapsed classical Deep
Boltzmann Machine (DBM) based multimodal generative
models [290] directly processing the data to generate embed-
dings that could be deployed for a diverse set of classifica-
tion and retrieval tasks. Later extended for temporal models,
Rajagopalan et al. [258] proposed using multi-view LSTM
for modeling view-specific and cross-view interactions over
time to generate robust latent codes for image captioning and
multimodal behavior recognition by directly undertaking the
multimodal inputs. While the development of combined la-
tent space by direct processing of the input modalities began
the trend of generating joint embeddings that could be used
for various tasks, the trend of generating individual spaces
followed by fusion to obtain a generalized encoding has taken
over for most VisLang tasks.

Multimodal Fusion. Multimodal fusion [13] is the amal-
gamation of individual embedding spaces corresponding to
the visual and textual input to obtain a composite space that
possesses knowledge of both: the semantic visual features as
well as contextual language information, required for various
VisLang tasks.

Hierarchical fusion that integrates two modalities at a
time in the first step, followed by homogenization of all three
modalities of text, audio, and visual inputs, has proven to be
instrumental in tasks like sentiment analysis [205]. Fusion of
these modalities has also been practiced via the virtue of low-
range tensors [195] or greedy layer-sharing [125]. Besides,
the task of multimodal fusion has also been posed as a neural
architecture search algorithm over a space spanning assorted
set of architectures [242]. While many prior approaches have
reaped the benefits of bi-linear and tri-linear pooling for the
combination of multimodal features, recent approaches have
also utilized multi-linear fusion to incorporate higher-order

interactions without any restrictions [124].

Multimodal learning is prone to a variety of challenges.
Identified in Wang et al. [337], the prime sources of chal-
lenges are in overfitting due to sizeable architectures and
contrasting learning rates of each modality. To cater to these
problems, the authors proposed an optimal incorporation of
each modality based on their overfitting trends. Other con-
temporary approaches have also dispensed the model with
the freedom to decide the method to combine multimodal
features, instead of fixing it apriori. Sahu and Vechtomova
[266] proposed a network that progressively learns to encode
significant features to model the context from each modality
specific to the set of data provided.

Multi-view sequence learning is another VisLang avenue
where fusion plays a crucial role. Zadeh et al. [387] intro-
duced a memory fusion network that adjudges both view-
specific and cross-view interactions to model time-varying
characteristics.

4.2. Attention Mechanisms
4.2.1. Onset of Attention Mechanisms

The advent of deep learning era brought about an influx
of works focussing on developing Seq2Seq models [299]
aimed at generating meaningful output sequences based on an
input sequence, both of arbitrary lengths. The initial works
consisted of a language encoder and decoder, predominantly
an LSTM/GRU, for tasks like machine translation [299] and
video captioning [325].

One major drawback of such Seq2Seq models emerged
out as their inability to accommodate long sentences [55].
The fixed-size context vectors failed to encapsulate informa-
tion from longer sentences. As a result, these models often
suffer from a sharp performance dip when processing com-
plex language inputs. In order to cater to this problem, the
first attention mechanism [14, 199] was introduced for the
purpose of Neural Machine Translation (NMT).

Attention mechanisms in deep learning can be simply
defined as channeling the importance of input regions based
on certain factors and weighing them as per their influence.

4.2.2. Attention in VisLang

Soon after, followed the instigation of attention mech-
anism for other tasks like image captioning to anchor the
objects of interest in visual inputs [359]. Here, we list the
broad categories of attention utilized for a diverse range of
VisLang tasks.

Soft and Hard Attention. In order to weigh the image
regions based on their importance for a particular input, at-
tention has been applied to the visual features extracted from
images using a simple CNN encoder. Two broad categories
of attention have been proposed to channelize the empha-
sis of different regions [359], namely the deterministic soft
and stochastic hard attention. In soft attention, the attention
map is multiplied to the extracted features and summed up to
obtain the relevance of all image regions. In contrast, hard
attention samples certain features based on a probability dis-
tribution to obtain the most relevant image region. In practice,
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soft attention is more popularly utilized because of the ease
of applying gradient descent due to its differentiability. Most
commonly, such attention methods have been applied to the
visual model in the architecture.

individual entities present in the input. The model’s ability
to reason their predictions has become exceedingly essential,
leading to the emergence of a new domain of interest referred
to as Explainable AI [268]. Such systems not only generate
explicable predictions but also are able to detect and therefore

Global and Local Attention. Tnitially introduced for NMT [198hdicate biases in the model that arise due to the ones present

this attention mechanism has been pivotal in developing a
divergent set of VisLang tasks. This mechanism works on the
principle of constructing a context vector as the weighted sum
of hidden states of the temporal model, weights of which are
learned by a separate alignment model. It enables the model
to learn richer representations guiding it to pay attention to
the more important input samples. In global attention, each
of the states prior to the current state is taken into account
while computing the output contrary to the local attention,
where only a few states are utilized for the same. Predomi-
nantly, global and local attention is utilized in the language
sub-network in VisLang models.

Self-Attention. Attention could also be applied within in-
dividual sequences to capture temporal relationships between
components in order to generate better representations. While
former approaches apply attention within input and output
sequences, self-attention applies it within the input sequence
itself in the encoding stage to generate better representa-
tions. Originated for the task of machine reading [50], it has
spanned a diverse range of applications that include visual
captioning [185], visual question answering [180], image-
text matching [353], and many more.

A variety of works have utilized variants of self-attention
for extricating semantic context. Hard self-attention has been
extensively studied under the lens of the medical imaging,
some of which focuses on medical image segmentation [228,
287], disease classification [100], etc. Hu et al. [126] used
soft self-attention to reweight the channel-wise responses at
a certain layer of a CNN to incorporate global information
when making a decision. Such a network is very flexible due
to the use of soft attention rather than a hard one, and can be
combined with a wide range of architectures with ease.

Ramachandran et al. [259] proposed self-attention to be
applied as a separate independent layer instead of the former
application of serving as a simple augmentation on top of con-
volutional layers. Such an approach was proven to enhance
image classification while using fewer parameters.

Despite its diversified applications and success in a wide
range of vision and language tasks, this type of attention is
less prevalent due to its high computational requirements in
terms of both time and space.

4.2.3. Paradigm Shift in VisLang Tasks

The past decade has seen a drastic evolution of vision
and language tasks that have transformed from simple tasks
requiring processing of fused multimodal embeddings, to
complex tasks that require higher-order reasoning and deep
understanding of semantic contexts presented in the inputs.
New tasks like VCR, VLN, MAC, etc. demand the model to
not only comprehend natural language and identify objects
in the scene, but also capture inherent relationships between

in training data.

Owing to these complex set of emerging tasks and the
diverse set of datasets that have surfaced, a number of novel
attention mechanisms have been utilized to embed the model
with the deep contextual understanding.

Graph-based Attention. With the aim to perform reason-
ing about each entity, graph-based attention mechanisms have
depicted an incredible ability to inculcate deep semantic re-
lationships between independent entities extracted from the
visual and language-based encodings.

Choi et al. [56] proposed using a directed acyclic graph-
based attention for extracting domain knowledge to learn
high-quality representation for healthcare applications. Later,
a factor-graph based attention capable of combining any num-
ber of data utility representations was proposed for the task
of visual dialogue [271].

It is often observed that graph-based attention mecha-
nisms flourish in tasks that require user-specific feature ex-
traction. Such frameworks tend to capture intrinsic relation-
ships between encoded representations and features present
in the data. Chen et al. [45] utilized graph-based attention for
image captioning to add more control over how much fine-
grained details are required in the caption by the user. Their
graph composed of three types of nodes representing objects,
attributes, and relationships based on which captions are gen-
erated. Also, a graph attention framework with multi-view
memory was used for the task of top n-recommendations as
per user-specific attributes [328].

Hierarchical Attention. In order to extract robust and
meaningful semantic information from each individual ele-
ment of text, hierarchical attention mechanism, introduced
by Yang et al. [372], utilizes separate sentence and word en-
coders. This framework involves building separate sentence
and documents embeddings using word and sentence hierar-
chy respectively by passing the output of the lower hierarchy
on to the higher one.

Although, initially studied predominantly for language-
based tasks like text summarization [69], document ranking
for q&a [415], contextual image recommendation [351],
hierarchical attention has also found immense amount of
application in vision-based tasks like medical image seg-
mentation [70], action recognition in videos [345], image
captioning [336], video caption generation [288], crowd
counting in images [285] as well.

Co-Attention. Attention may also be applied in a pairwise
manner in order to learn affinity scores between two pieces of
documents or texts mostly for matching-based applications.
Such frameworks are most common in tasks that require
comparison between text samples like essay scoring [394],
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text matching [308], reading comprehension [417]. Xiong
et al. [357] utilized co-attentions for the fusion of indepen-
dent question and document encodings for the purpose of
question answering. In order to amalgamate the information
retrieved from multimodal inputs (i.e. audio, text and video),
Kumar et al. [164] performed multimodal alignment with the
help of co-attention for multimodal question-answering. Li
et al. [177] matched images to textual description by using
two separate co-attention modules for extracting spatial and
semantic information respectively.

This attention mechanism is one of the most profoundly
utilized type for the task of VQA due to their ability to model
corresponding words in the questions to objects in the visual
input. Yu et al. [384] proposed self attention between images
and questions alongside question-guided-attention for images
as a separate layer in order to map key objects in questions
to the ones detected in the images. Lu et al. [198] introduced
a novel co-attention mechanism for jointly reasoning about
the image and the question besides reasoning about the in-
dividual inputs in a hierarchical fashion. For video question
answering, Li et al. [180] utilized co-attention for computing
the important words in the questions besides self attention
for computing the video features corresponding with respect
to the input question. Lu et al. [198] used co-attention to
jointly reason about images and questions in a hierarchical
fashion for VQA. The ability of co-attention in building ro-
bust image-question representations has been illustrated in
various works that include [385, 392, 223].

Others. A variety of other attention mechanitsms were also
introduced with the aim to supplement visual language tasks
with a reasoning-based backbone, making their predictions
interpretable as well as effective. Yu et al. [383] extended
the traditional self attention for unimodal inputs that captures
inter-modal interactions to a unified attention framework that
captures both inter as well as intra-modal interactions of
multimodal features. They introduce a network that performs
multimodal reasoning using gated self attention blocks for
the tasks of VQA and visual grounding. Gregor et al. [98]
utilized the selective attention mechanism introduced for the
purpose of handwriting synthesis [96] and Neural Turing
Machines [97], in order to generate high fidelity complex
images indistinguishable to the human eye. Another work Pan
et al. [232] focused on capitalizing on bilinear pooling blocks
in order to discerningly attend to certain visual regions or
performing multimodal reasoning. These X-Linear Attention
blocks capture higher order feature interactions by utilizing
spatial and channel-wise bilinear attention, leveraging them
for the task of image captioning.

4.3. Transformers in Cross-Modal Research
4.3.1. Onset of Transformers for Capturing Temporal
Data Characteristics

Transformers are architectures that take advantage of two
separate networks, namely encoder and decoder, to trans-
form one sequence into another. Unlike formerly described
Seq2Seq models, transformers do not consist of a tempo-
ral model like an LSTM or a GRU. Initially, such models

were found to be effective in generating sequences from the
same distributions for tasks like machine translation [322].
Transformers are models employing attention mechanisms
(described in Section 4.2) that capture temporal characteris-
tics (predominantly in natural language processing). These
typically undergo faster computation as they do not require
sequential processing of data, therefore, promotes paralleliza-
tion of data as opposed to RNN or LSTM-based temporal
models. For the purpose of handling sizeable datasets, trans-
formers outperforms its counterparts and hence, it has been
active area of research in the VisLang community. After the
advent of the popularity of simpler temporal models for the
encapsulation of time-varying signals, various models arose
that sought to replace the LSTM/RNN-based approaches as
they demanded heavy computation requirements and often
suffered from overfitting and vanishing gradients. Uncompli-
cated models like Temporal Convolutional Network (TCN)
[15] and Gaussian-process VAEs [19] besides transformers
have effectively replaced LSTMs and RNNs due to their ease
of implementation, rapid and stable training, and generaliza-
tion capacity.

4.3.2. Pre-Training Trends using Transformers

Recent literature has seen a sudden outburst of research in-
terest in transformers for learning representations that can be
utilized for a wide variety of tasks. Tan and Bansal [304] pro-
posed LXMERT, a cross-modal transformer for encapsulating
vision-language connections by utilizing three specialized
encoders corresponding to object relationships, language and
cross-modality to pretrain on five diverse tasks. Cho et al.
[54] goes further with this idea to enable the model to gen-
erate images from these transformer representations via sig-
nificant refinements in the training strategy, empowering the
model to rival state-of-the-art generative models. Devlin et al.
[68] introduced BERT that learned deep bidirectional repre-
sentations from textual data to design a pre-trained model that
can be fine-tuned for specific tasks like question answering
and natural language inference.

Later, this framework was extended for multiple modali-
ties to generate representations that encapsulate fused infor-
mation from different sources of data like speech, text, and
visual inputs (image or video) in a self-supervised fashion.
VideoBERT Sun et al. [297] built upon this idea for creating
such representations for videos that could be later used for
downstream tasks like video captioning and action recog-
nition. On similar lines, VILBERT [196] and Visual BERT
[176] generated shared representations for images and text
enhancing performance on tasks like image captioning, vi-
sual question answering, commonsense reasoning, and image
retrieval. ImageBERT [252] utilized weak supervision for
generating an image-text joint space for unique and specific
prediction tasks that involved input masking and text match-
ing. More recently, contrastive learning paradigms have ac-
centuated the competency of self-supervised learning using
data augmentations in vision-based applications like image
classification. When combined with multimodal representa-
tion learning using BERT-inspired frameworks, its efficacy in
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developing better representations has been exploited for tasks
that involve joint training over multiple modalities [314, 295].

Such representations have been utilized for a diverse set
of multimodal tasks that include visual question answering
[409, 370, 5], visual captioning [409, 135], visual dialogue
[221, 343], cross-modal retrieval [87], etc.

4.4. Evaluation Metrics

Metrics for language-based outputs popularly involve
Bilingual Evaluation Understudy (BLEU) [233], Recall Ori-
ented Understudy for Gisting Evaluation (ROUGE) [190],
Metric for Evaluation of Translation with Explicit Ordering
(METEOR) [17] and Consensus-based Image Description
Evaluation (CIDEr) [324] across a variety of multimodal
tasks. Originally introduced for machine translation tasks,
BLEU score effectively evaluates any generated text com-
pared to a reference text for a variety of tasks. It operates on
counting matching n-grams, ranging from 0.0 (for a perfect
mismatch) to a 1.0 (for a perfect match). ROUGE works on
comparing a generated summary against target summary by
considering the ratio of number of overlapping words and
the total number of words. Some of its many variants are
ROUGE-1 (unigram overlap), ROUGE-N (N -gram overlap),
ROUGE-L (based on Longest Common Subsequence). ME-
TEOR (originally introduced for machine translation tasks)
is calculated via a weighted harmonic mean of unigram pre-
cision and recall, with a higher weight assigned to recall. To
evaluate generated image descriptions based on human con-
sensus, CIDEy measures sentence similarity of a generated
sentence across a set of ground truth sentences considering
factors like grammaticality, saliency, precision, and recall.

For the tasks with visual outputs, R-precision [61] was in-
troduced for retrieval-based algorithms, later used for language-
to-image generation task. It provides a ratio of r relevant
retrievals given the top-R retrievals. Inception Score (IS), in-
troduced by Salimans et al. [267] was to measure the quality
of the generated samples in terms of semantically meaningful
objects and diverse set of images, comparing marginal label
distribution with conditional label distribution. Fréchet In-
ception Distance (FID) Heusel et al. [116] further improved
upon IS by comparing generated samples against real sam-
ples instead of comparing with themselves. In contrast to IS,
where higher scores are better, lower FID is better, denoting
a lesser difference between the distributions of the generated
and the real samples.

Besides these metrics, human evaluation via crowd-sourcing

is another popular technique to assess the efficacy of predic-
tions in VisLang tasks like VQA and IC.

Apart from these standard metrics and human evalua-
tion, several recent works have proposed task-specific metrics.
Here, we list the recent literature that have proposed novel
evaluation metrics.

Metrics for IC. Various popular IC evaluation metrics are
overly sensitive to n-gram overlap, as a result they do not
correlate well with human assessment. To counter this, An-
derson et al. [8] proposed SPICE to capture human judgment
motivated by the importance of semantic proportional content

over scene graphs. On similar lines, Sharif et al. [274] also
introduced a learning-based metric that quantifies both the
lexical and semantic correctness of the generated caption to
improve correlation with human judgment. Despite the high
association with human evaluation, these metrics fail to cap-
ture syntactical sentence structures. Therefore, Cui et al. [62]
came up with an evaluation metric that is specifically modeled
to distinguish between machine and human-generated visual
captions. Likewise, Jiang et al. [141] proposed a novel metric
called TIGETr that not only quantifies how well the caption
captures the contents in the image but also their proximity to
human-generated captions.

While captions containing similar words or their syn-
onyms could be semantically dissimilar while ones not hav-
ing any such similarities may be correlated semantically. In
order to capture semantic similarities instead of commonali-
ties in objects, attributes, or relations, Kilickaya et al. [152]
evaluated the performance of the metric Word Mover’s Dis-
tance [165] against other popular language metrics to com-
pute the distance between documents.

Metrics for VQA. Various VQA datasets have skewed dis-
tributions due to the bias prevalent as a result of the varying
number of samples present from each answer category. In
order to cater to this problem of inductive data bias, Kafle and
Kanan [143] proposed to utilize Arithmetic and Harmonic
mean-per-type (MPT) of the accuracies obtained from each of
the answer categories for a fairer evaluation. For specific sub-
tasks of VQA wherein the questions are based on the texts
found within the scene images, Biten et al. [22] introduced
a novel metric Average Normalized Levenshtein Similarity
(ANLS), that quantifies OCR by keeping in mind the rea-
soning capability of the model and softly penalizing OCR
mistakes. For the particular task of VQA when questions
are expressed in two different languages, Wang et al. [340]
proposed a metric called Evidence-based Evaluation (EVE).
This metric evaluates the model on two grounds namely cor-
rectness of the answer and sufficiency of evidence to support
the predicted answer. Although, this work focused on a sub-
task of VQA, but this metric can be applied to general VQA
settings as well, thereby making answer predictions from
VQA models more justifiable.

Metrics for other VisLang Tasks. The task of visual
question reasoning offers a challenging engagement in the
sense that they seek to design models that possess high-order
reasoning capabilities. In order to evaluate the capacity of the
model to provide interpretable justifications, Cao et al. [31]
suggested to utilize the explainable evaluation metric that
calculates the triplet (the questions often contain relationship
triplets to enable the model to perform multistep reasoning)
precision for each question and average recall of all q&a pairs
to obtain the final recall.

Hudson and Manning [134] proposed a novel dataset
for visual reasoning and compositional question answering,
accompanied by a set of original evaluation metrics to enu-
merate the performance of such models. The authors defined
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the following metrics for inference: consistency that utilized
questions’ semantic representation for inferring the associa-
tions between them, validity and plausibility that verifies if
the answer lies within the scope of the question, distribution
that validates if the approach is able to model the conditional
distribution of the answers, and grounding that verifies the
relevance of attended regions with respect to the questions.

S. Emerging Ideas in VisLang Research

In addition to the task-specific and modeling trends in
recent VisLang literature, we also identify the emerging top-
ics that leverage VisLang data using unique training strate-
gies. The last few years have witnessed an escalation in these
methodologies being applied to the VisLang domain.

5.1. Multi-task Learning

Multi-task Learning (MTL) [33] is an age-old concept of
joint learning across multiple tasks to transfer the learnings
of one task onto the other, eventually benefiting the perfor-
mance on each of them. This approach of MTL has been
gaining popularity in the domain of vision and language as a
result of the implicit manifestation of similar attributes be-
tween different modalities. The encapsulation of attributes
from multimodal data sources could help the model capture
semantic relationships between entities of varying modalities,
enhancing the model’s understanding of concepts present in
the data.

There have been attempts to create a model VILBERT-
MT [197] (MTL extension of ViLBERT [196]) capable of
learning a joint representation for four diverse VisLang tasks
on a collection of 12 datasets by employing a large-scale MTL
training procedure followed by fine-tuning for specific tasks.
Some works [224, 4] also focused on learning hierarchical
representations wherein predictions for multiple tasks could
be performed at different levels of hierarchy. lamBERT [217]
extended the BERT framework for generating multimodal
representations by blending it with reinforcement learning in
order to perform MTL along with transfer learning.

MTL frameworks have also extracted meaningful repre-
sentations for specific VisLang tasks by dividing them into
sub-tasks, each of which combines to solve the complete
objective. IC has one such task that has greatly benefited
from the advent of MTL in deep learning systems. Some
approaches [404] have tried breaking down the unabridged
task of captioning into a set of three sub-tasks that include
learning a category-aware representation, syntax generation
model, and captioning model. Such models hypothesize that
treating object classification and syntax knowledge as key
aspects of IC and collectively applying MTL for optimizing
these three objectives would lead to models with better cogni-
tion capabilities coupled with syntax understanding of natural
language. On similar lines, IC has also been proposed as a
task of learning captioning besides another supplemental task
like activity recognition in visual inputs [79], image-sentence
retrieval [332] or text-to-image synthesis [364]. While there
have been attempts to disintegrate the task of IC into several
sub-tasks to enhance the performance of IC models, some

works [327] have also focused on using image captions as
an auxiliary source of data for other tasks as it promotes the
model to apprehend associations between entities present in
visual and language inputs. Apart from the deep learning-
based MTL approaches, some works [175] have also focused
on designing a reinforcement learning approach that strives
to construct several tasks (like rewards, attributes, captions)
for captioned videos in order to strengthen the generalization
power of their IC model, using much fewer computational
resources.

Although MTL is more commonly applied for the task
of IC, they have also been several attempts to apply it for the
prime task of VQA. Here, the concept of MTL is embodied
by breaking into sub-problems, where each contributes to-
wards generating reasonable answers to questions given an
image [245]. Also, Kornuta et al. [159] utilized MTL along-
side transfer learning for capturing similarities between distri-
butions of radiology images coming from different modalities
to perform four disjoint question-answers tasks on them.

In order to bridge the gap between the performance of
VLN models on previously trained and unseen environments,
some works have focused on employing an MTL framework
for learning an environment-agnostic latent representation
that could be utilized for generalizing on unseen environ-
ments as well [339]. Deep reinforcement learning frame-
works, amalgamated with a novel dual-attention have also
been put to good use to disentangle features generated from
textual and visual inputs [35]. These representations were
then utilized for tasks like semantic goal navigation and em-
bodied question answering.

Some approaches have also pursued performing a di-
verse set of unique multimodal tasks using an MTL frame-
work. Learning sentiment analysis alongside emotion recog-
nition by capitalizing on visual, textual, and acoustic data
from video frames via a context-level attention mechanism
achieved satisfactory results on both tasks [3].

5.2. Interpretability and Explainability

Fairness in machine learning has recently raised many
questions about the transparency of algorithms that were oth-
erwise used as black boxes. This has brought forth several
biased assumptions made by models due to the inherent biases
present in the data and prior knowledge occupied by the mod-
els, which previously remained unnoticed. Interpretability
and explainability are two such aspects of this trend. On the
one hand, interpretability requires understanding the cause
and effect relationship of certain learnt factors and answering
the “what" of the underlying mechanics [92], explainability
focuses on explicitly describing the facts regarding “why"
and “how" [355]. However, more often than not, these terms
go hand in hand, directing to explicability of the system.

Several such efforts have been recently made in tasks such
as VQA, mainly leveraging attention-based textual to visual
inferences using parse-trees [32] and, qualitatively visualiz-
ing the effect of altering textual inputs keeping the image
fixed [323] using a probabilistic approach. Interpretability
has also been explored by analyzing the accuracy capabil-
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ity of user predictions on VQA agents in interactive learn-
ing settings [127, 7]. Modular approaches tend to have a
higher degree of interpretability. The multimodal task of
VQA becomes more interpretable and coherent with multi-
modal interpretability as well wherein the choice answers
can be justified in both textual and visual arena [235]. Also,
reasoning out the question-answering task has been well cap-
tured with learning question specific graph-based interactions
in images [227] and hierarchical patterns to provide valid ex-
planations and answer-specific substreams in sequential data
using visual-text attention [187].

Other approaches move one step beyond visualizing in-
termediate effects of attention to studying more task-relevant
attributes for reasoning out the behavior of deep learning
models. For example, explainability in image captioning
is achieved at pixel-level by showing the relevance of spe-
cific keywords in textual descriptions with relevant entities
in the visual using layer-wise relevance backpropagation
(LRP) [295], even in medical images [286]. More generally,
multimodal explainability has gained visibility to provide
coherent reasons in both textual and visual spaces for model
predictions, leading to significantly vivid and self-explicable
models [234].

Visual Reasoning task requires machines to ideally look
beyond the face value of any image to capture correct re-
lations and context before generating suitable descriptions.
This has been benefited by using scene graphs as inductive
biases [278], Raven’s Progressive Matrices paired with struc-
tured graphical representations [393].

Some other prominent approaches for building interpretable
and causal models is via disentangled representations, multi-
modal explanations and counterfactuals [92, 146].

Datasets. Several new datasets have been proposed for achiev-

ing interpretable multimodal learning. Zhang et al. [393] pro-
posed a new dataset based on Raven’s Progressive Matrices
(RPM)? to facilitate the task of reasoning. It is curated to
emphasize visual recognition reasoning, comprising images
and related RPM problems, with tree-structured annotations.
A counting-based dataset is sampled from the available VOA
2.0 [2] and Visual Genome (VG) [163] datasets for the task-
specific release by Trott et al. [315]. This work focused on
countable quantitative question answering for answering spe-
cific queries asking “how many?". Park et al. [234] introduced
two novel datasets dedicated to explainability for visual ques-
tion answering (VQA-X) and activity recognition (ACT-X)
tasks comprising of textual justifications for each image-text
input pair. The VQA-X dataset has since then been considered
a benchmark for many other explainable models [238, 348].

Contrastive Learning. Contrastive Learning provides neu-
ral models with self-supervised competence using relevant
(positive) and irrelevant (negative) pairs. More recently, it
has been utilized to improve multimodal representations, be it

2RPMs are reasoning-based questions comprising of visual geomet-
ric patterns with sequential non-verbal cues, with the missing piece to be
identified.

for pretraining [280], where it helps in diminishing issues of
noisy labels and domain-biases or for enhancing task-specific
performances. For the latter, it has been explored in different
capacities for the task of image-captioning for either promot-
ing distinctiveness in the generated captions [63] or mapping
regions in the image with relevant words [105], in order to
be leveraged for appropriate attention-weights. Additionally,
contrastive loss has also been used to model inter-class dy-
namics in multimodal settings to enforce modality-agnostic
feature representations with high semantic interpretability for
multiple downstream tasks [319].

Counterfactuals. Another important aspect of interpretable
machine learning models is explored under the lens of coun-
terfactual reasoning. It aims at inferring the causes of a
prediction and the relationship between them under distor-
tions in the input. Most recent approaches tend to capture
the effect of masking essential input objects (visual) [1] or
tokens (textual) or both [41] and analyze how it deviates from
the original image. Such methods allow more interpretable
machine predictions with supporting cause-effect relations.
VQA models are generally considered language biased. To
capture the intricacies of this fact, Niu et al. [225] studied
this causal inference using counterfactual settings where vi-
sual ground truth input is considered absent in an imagined
scenario. This inference strategy explains inherent lingual
biases present in VQA models. Similarly, for analyzing the
effect of visual biases, Pan et al. [230] synthesized similar
yet different images than ground truth and then studied how
and why the answers change with differing visual distortions.

For visual captioning, counterfactual explanations help
immensely in analyzing the learning patterns of the models
and the reasons behind certain predictions. Such explanations
emphasize the observations, present or missing, that lead to
certain outputs [113, 146]. Fang et al. [78] obtained counter-
factual resilience in image descriptions by parsing entities,
semantic attributes, and color information separately. More-
over, such counterfactual reasonings have been utilized even
in reinforcement learning settings for non-auto-regressive im-
age captioning [102] and scene graph representation [42] to
optimize team rewards as per individual agent counterfactual
baselines in a multi-agent environment.

Bias and Fairness in VisLang. Lack of balanced data
and feature selection have been commonly prone to introduc-
ing biases in models and machine learning algorithms. This
often leads to a compromise on the fairness and transparency
of such models on various grounds. Multimodal representa-
tions being subjected to more than one type of information,
can infuse multiple such instances of biased information into
deep learning models. Peiia et al. [239] demonstrated how
biases affect automated recruitment systems in one way or the
other. With varying gender and ethnicity records across the
dataset, the deep learning frameworks pick up subtle biased
information even when certain information modalities are
masked out from the input.

Bias trends have also been observed in task-specific trends.

Uppal et al.: Preprint submitted to Elsevier

Page 18 of 29



Trends in VisLang Research

In VQA task, the models often pick up statistical irregulari-
ties, thereby inducing biases in the model predictions and gen-
erations. Unimodal biases in the textual inputs neglect visual
information, thereby reducing multimodality considerations.
Such biases often lead to massive drops in the performance
when confronted with data outside training distributions [25].
Moreover, most models show that generalized and trivial
questions are commonly answered with prior lingual knowl-
edge instead of querying the image. Therefore, keyword
dependencies over correct image reasons are necessary to ob-
tain correct, interpretable models and can be comprehended
via attention maps [206]. Other adversarial and discrimi-
native methods have helped to overcome language bias by
analyzing question-only approaches where visual modality is
masked to see the partial or complete influence of language
statistical patterns [260].

For the task of image captioning, visual cues in the train-
ing images serve as potential bias carriers, which are further
amplified in the model predictions during inference. Several
such biases have been seen in identifying gender correctly.
Most model predictions base unclear gender descriptions as
per activity and context in the image, thereby adding unfair
inductive biases, hampering gender-neutral understanding of
models [23]. Other such efforts focus on two major subtasks
or gender-neutral captioning in case of occlusions and correct
gender classification otherwise [20].

All in all, such methods focus on making different multi-
modal frameworks more reliable, interpretable by allowing
the models to provide reasonable predictions for the right
reasons rather than just optimizing the performance without
looking for deep-down causes of errors.

5.3. Domain Adaptation in VisLang

Domain adaptation is simply the procedure to learn a
representation or model for the source domain and evaluating
it on the target domain. Typically in initial unsupervised
approaches [86], the labels for source domain were utilized
for achieving generalization on the target domain with incom-
plete or no labels by deploying two separate classifiers for
domain and label classification, respectively.

Learning domain generalizable representations for the
task of VLN is indispensable due to the high cost of training
in the real world. Commonly, several approaches aim to learn
representations on simulations that would extrapolate in the
real world scenario. Other works have focused on learning
transferable representations that could enable training on one
domain and later transferring them to the target domain for
VLN tasks like Room-to-Room (R2R) [128].

Various approaches have also aimed at using domain adap-
tation for VQA and IC. It is essential to design models that
are generalizable to a broad set of datasets. For domain adap-
tation in VQA, various approaches aim at converting feature
representations from one distribution (dataset in this case)
to some other target distribution without sufficient labels.
While some methods achieve this by maximizing the likeli-
hood of answering questions in the target domain [34], others
capitalize on limited labels via fine-tuning after training on

source domain [362]. For IC task, learning user-specific
personalized image captions requires the model to captures
similarities and correlations between a collection of data sam-
ples coming from a distribution. Chen et al. [47] targeted
transferring the learnt IC model trained on the paired large
scale source dataset to target dataset with no paired data. This
work utilized two critic networks besides the image captioner,
namely the domain critic and the multimodal critic. While
the domain critic aimed at making the source captions indis-
tinguishable from the ones in the target, the multimodal critic
predicts if the given pair is valid.

Other multimodal tasks like sentiment analysis, multi-
modal retrieval, etc. have also benefited from the emergence
of deep learning-based domain adaptation frameworks. Prior
work [253] has focused on identifying correlations between
embeddings from different modalities using a multimodal
attention mechanism, fusing these attended features and learn-
ing domain-invariant features by involving certain domain
constraints in the optimization objective [111].

5.4. Zero-Shot Learning

Learning to generalize at inference time on samples from
classes unseen during the training phase, referred to as Zero-
Shot Learning (ZSL), has been extensively investigated in
the vision and language paradigm individually. In recent
literature, various approaches have tried to counter the lack
of labeled examples of a certain set of data by deploying
ZSL-based methods.

To solve the problem of lack of generalization of VC
models on unseen objects, Demirel et al. [66] utilized a ZSL-
based object detector model for identifying key objects in
visual input along with a sentence generator using extracted
features to produce captions.

ZSL in VQA aims at developing intelligent agents that
comprehend concepts learned from one module (i.e. ques-
tions) and are capable of transferring this knowledge onto
other modules (i.e. answers) during test time. For this, Li
et al. [184] proposed a zero-shot transfer VQA dataset that
reorganized the VQA v2 dataset in a manner that the words
are divided among the different modules in an exhaustive and
disjoint fashion. Teney and Hengel [309] also promoted ZSL
in VQA by suggesting effective strategies that included pre-
trained word embeddings, object classifiers with semantic
embeddings, and test-time retrieval of example images that
enhanced the zero-shot performance of existing approaches.

5.5. Adversarial Attacks

Attacks on machine learning models intended by the user
to cause a false prediction using carefully designed examples
(known as adversarial examples) are called adversarial at-
tacks [95]. Adversarial attacks for general machine learning
models (predominantly classification models) have been an
active area of research for decades now, with tons of papers
focusing on various novel types of attacks and others focus-
ing on building models’ defense mechanisms. A model’s
response to such adversarial examples justifies the generaliz-
ability to samples not present in the training set but belonging
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to the same distribution. Recently, the paradigm of adver-
sarial attacks and the development of response against them
via adversarial training have gained traction for multimodal
tasks involving vision and language.

Although recent VQA models have spotted significant
progress in performance, adversarial examples may hinder
their practical application [361]. To evaluate the robustness
of state-of-the-art VQA models, Sharma et al. [276] came
up with an attention-guided adversarial sample generation
technique. They also proposed an additional evaluation met-
ric that quantifies the strength of a given attack based on
relative decrease in accuracy and noise induced. Other ap-
proaches [129] have also tried to utilize semantically related
questions and dubbed basic questions as noise to evaluate the
robustness of these models. After extensive experimentation
for determining if VQA models apprehend the importance
of various inputs, Mudrakarta et al. [220] concluded that
these models often fail to capture important question terms.
Motivated by this, they proposed an attack that perturbs the
question terms to fool VQA models. Contrary to approaches
manipulating one input to the model, some have also tried
out modifying multiple modalities to reduce the accuracy of
these models. Tang et al. [306] proposed to manipulate both
image and question and subsequently trained a VQA model
adversarially to defend against such attacks.

Adversarial examples have also been successful in re-
ducing the performance of VC models by adding noise to
visual inputs. Zhang et al. [399] proposed to craft an adver-
sarial example with semantic embedding of target captions
to fool image captioning CNN-RNN-based models. On sim-
ilar lines, Chen et al. [39] also introduced an adversarial
attack for similar models that test the ability of model to be
misled to produce a certain randomly chosen caption (or key-
words). Another similar evaluation protocol utilized by other
approaches [363] was to test if it was possible to generate a
certain partial (words are some locations are restricted while
other locations are not) caption using some perturbation in
the input image.

6. Discussion

VisLang learning involves effectively transferring knowl-
edge across modality spaces and uniting bi-modal represen-
tations in a collaborative structure. Such learning makes
it essential to have robust representations for a generalized
improvement in the performance of underlying downstream
tasks. The rapid boom in VisLang research has accelerated
the instigation of self-reliant models that interpret interactions
in visual and language modalities. Despite the furtherances,
there lies a plethora of challenges and future directions in
this active research area.

Challenges. With the challenge of lack of available labeled
data, along with unsupervised (or weakly supervised) ap-
proaches, unsupervised metrics are essential for fairly evalu-
ating progressive approaches, in ways close to human evalua-
tion. Several foregoing approaches that claim unsupervised
nature of their learning methodology are not unsupervised in

a true sense since they require labels at the evaluation stage.
Therefore, standardized evaluation protocols for the inference
of VisLang systems without the requirement of labels is indis-
pensable. Hessel and Lee [115] proposed a novel diagnostic
method for learning cross-modal interactions in multimodal
learned representations. Moreover, video-based VisLang
research tasks can add another overhead of temporal data
to VisLang research, which differentiates it primarily from
multimodal tasks. Such consideration shall bring forth yet
another challenge of temporal alignment across modalities,
which is generally latent in current vision-language studies.
Another major challenge is the substantial efficiency in the
alignment of representations across modalities, which has a
significant impact on several downstream task performances.
The lack of thorough multimodal inputs might still be an
impending challenge, especially for temporal modalities such
as videos, where missing or corrupted frames occur in prac-
tical scenarios. This calls for models where the processing
of inputs is preceded by prediction of missing information,
adding to the uncertainty of prediction.

Future Directions. Contrastive learning, probabilistic graph-
ical models (like causal networks and counterfactuals), and
disentanglement (popularly inspired by visual representa-
tion learning) have more recently paved a way into VisLang
Research. It opens a wide arena of interpretable and transpar-
ent deep learning algorithms, thereby reducing overall bias
and increasing the reliability of a system. Simultaneously,
it opens the requirement for novel reasoning-based datasets
for explicable models and relevant metrics that quantify not
only the separation from ground-truth data but also measure
the higher-level reasoning and cognition capabilities over
complex datasets.

Heading towards more challenging and real-world intelli-
gent systems, it is essential to step towards complex forms
of current problems with minimum assumptions and induc-
tive biases. This can be in the form of subjective question-
answering, dialogue-based agents for caption generation, or
generalizing vision-language navigation to multi-agent sys-
tems and unseen environments.

Emphasizing the generalization capability of algorithms
to be deployed in real-world scenarios, multi-task learning,
transfer learning, curriculum learning, reinforcement learn-
ing, zero-shot learning (ZSL), and unsupervised/self-supervised
methods open a yet to be exhausted avenue of research for
many VisLang tasks. Often regarded as the extreme case of
domain adaptation, ZSL has been instrumental in the devel-
opment of generalizable VisLang models.

7. Conclusion

We present and categorize the current VisLang tasks
based on their key characteristics highlighting their promi-
nent similarities and dissimilarities. The brisk developments
in deep learning architectures have enabled the circumstance
of compelling VisLang models that have outperformed hu-
mans in a diverse set of tasks. We outline the diversified
applications involving vision and language modalities to de-
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sign intelligent VisLang models with interpretable semantic
cognition capabilities coupled with a comprehensive under-
standing of natural language. Further, we enlist the recent
trends within each task and the learning methodologies har-
nessed in contemporary literature.
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