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Abstract

Contextual language models (CLMs) have pushed the NLP
benchmarks to a new height. It has become a new norm to
utilize CLM provided word embeddings in downstream tasks
such as text classification. However, unless addressed, CLMs
are prone to learn intrinsic gender-bias in the dataset. As a
result, predictions of downstream NLP models can vary no-
ticeably by varying gender words, such as replacing “he” to
“she”, or even gender-neutral words. In this paper, we focus
our analysis on a popular CLM, i.e., BERT. We analyse the
gender-bias it induces in five downstream tasks related to emo-
tion and sentiment intensity prediction. For each task, we train
a simple regressor utilizing BERT’s word embeddings. We
then evaluate the gender-bias in regressors using an equity
evaluation corpus. Ideally and from the specific design, the
models should discard gender informative features from the in-
put. However, the results show a significant dependence of the
system’s predictions on gender-particular words and phrases.
We claim that such biases can be reduced by removing gender-
specific features from word embedding. Hence, for each layer
in BERT, we identify directions that primarily encode gender
information. The space formed by such directions is referred
to as the gender subspace in the semantic space of word em-
beddings. We propose an algorithm that finds fine-grained
gender directions, i.e., one primary direction for each BERT
layer. This obviates the need of realizing gender subspace in
multiple dimensions and prevents other crucial information
from being omitted. Experiments show that removing embed-
ding components in such directions achieves great success in
reducing BERT-induced bias in the downstream tasks.

1 Introduction
Gender stereotypes can obstruct gender neutrality in many
areas such as education, work, politics. Despite years of
headway towards gender neutrality, the significant bias in
social norms still exists. Automatic machine learning sys-
tems are likely to reproduce and reinforce existing gender
stereotypes. Such issues have percolated down to even the
language models that have recently set the state of the art in
various natural language processing (NLP) tasks. However,
the blunt application of language models risks introducing
gender-bias in real-world systems.
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It is becoming increasingly common to use an LM’s con-
textualized word-vectors in downstream tasks such as text
classification, question-answering, and conference resolu-
tion. In this work, we focus our analysis on one of the most
famous language models: Bidirectional Encoder Representa-
tions for Transformers known as BERT (Devlin et al. 2018).
BERT is a transformer-based architecture (Vaswani et al.
2017) that has inspired many recent advances in machine
learning even beyond language-only systems (Lu et al. 2019).
BERT allows parallelized training and deals with long-range
dependencies better than RNN-based models such as ELMo.

Existing studies mostly focus on identifying gender-
bias in context-independent word representations such as
GloVe (Bolukbasi et al. 2016). Contrarily, BERT word to
vector(s) mapping is highly context-dependent which makes
it difficult to analyse biases intrinsic to BERT. We hypoth-
esize that such biases will be reflected in downstream tasks
exploiting BERT word embeddings. Hence, in this work, we
investigate gender-bias induced by BERT in 5 downstream
tasks that collectively fall in a category of tasks–Affect in
tweets. The category splits into two sub-categories 1) emo-
tion intensity and 2) valence (sentiment) intensity regression.

To perform the above-mentioned tasks, we train simple
MLP-regressors exploiting BERT embeddings. We probe
gender-bias in the trained models using an equity-evaluation
corpus. The corpus consists of sentences especially designed
to tease-out biases in NLP systems. Ideally, MLPs should not
base their predictions on gender-specific words or phrases
in the input. However, we observe the MLPs to consistently
assign higher (or lower) scores to the sentences with words
or phrases indicating a particular gender. For instance, one
of the MLP regressors predicts high emotion intensity scores
to sentences with female words than male words under the
same context (Poria et al. 2020). We call such systems as
gender-biased. It is worth noting that the gender inclination
is found to be specific to the task and word embedding used,
hence ungeneralizable.

Due to the simplicity of MLP’s, we hold BERT account-
able for the observed gender-bias. Subsequently, we show the
existence of layer-specific orthogonal directions where BERT
encodes crucial gender information. We call such direction
as gender directions and the space spanned by them as gen-
der subspace. The directions (thus subspace) is unique to
a BERT layer. The quality of extracted gender directions is
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identified by defining a new metric gender separability. To
reduce the number of dimensions of gender subspace, we
propose a novel algorithm that identifies fine-grained gender
directions, i.e., one for every BERT layer. Thus, the obtained
gender subspaces are 1-dimensional. The layer-wise elimina-
tion of vector components in gender directions helps reduce
gender-bias in the downstream regression models.

To establish the importance of extracted gender directions,
we design another downstream task, i.e., gender classification.
The task specifically needs gender encoded features from the
input word’s vector representation. We find the BERT-based
MLP to outperform a baseline gender classifier, proving the
existence of gender-rich features in BERT embeddings. Ad-
ditionally, removing gender-specific directional components
from BERT embeddings drops the classification performance
significantly. This concludes that the identified directions are
close to the directions in BERT embeddings that encode the
notion of gender.

2 Related Work
While a lot has been studied, identified, and mitigated when
it comes to gender-bias in static word embeddings (Boluk-
basi et al. 2016; Zhao et al. 2018b; Caliskan, Bryson, and
Narayanan 2017; Zhao et al. 2018a), very few recent works
studied gender-bias in contextualized settings. We adapt the
intuition of possible gender subspace in BERT from (Boluk-
basi et al. 2016), which studied the existence of gender di-
rections in static word embeddings. (Zhao et al. 2019; Basta,
Costa-jussà, and Casas 2019; Gonen and Goldberg 2019)
focused their study on ELMo. (Kurita et al. 2019) provided a
template-based approach to quantify bias in BERT. (Sahlgren
and Olsson 2019) studied bias in both contextualized and
non-contextualized Swedish embeddings.

To the best of our knowledge, we are the first to identify
gender-bias in BERT by analysing its impact on downstream
tasks. We propose a novel algorithm to identify fine-grained
gender directions to minimize the exclusion of important
semantic information. Empirically, the elimination of embed-
ding components in gender directions proves to be signifi-
cantly reducing gender-bias in the tasks under study.

3 Background
BERT In our study, we analyse BERT base12 layers
(transformer blocks), 12 attention heads, and 110 million
parameters. The model is pre-trained on masked-language
model and next sentence prediction tasks (Devlin et al. 2018)
on lower-cased English text. Out-of-vocabulary (OOV)
words are WordPiece tokenized that breaks a word into sub-
words from the pre-defined vocabulary. An input sequence of
words W is prepended with [CLS], appended with [SEP],
and tokenized to generate Wt = {wcls, w1, ..., wn, wsep}.
First, tokens are mapped to context-independent vectors
W0 = {tcls0 , t00, . . . , t

n
0 , t

sep
0 }, we denote it as layer0.

{layeri}12i=1 are transformer layers that map vectors in W0

to contextualized vectors {Wi}12i=1. We denote tij ∈ IRdb

as vector representation of wj at the output of layeri. We
utilize vocabulary and BERT pre-trained model from (Wolf
et al. 2019).

4 Equity Evaluation
Equity Evaluation Corpus (EEC) (Kiritchenko and Mo-
hammad 2018) The dataset contains template-based sen-
tences such as “<Name> feels angry”. <Name> can be
a female name such as “Jasmine”, or a male name such as
“Alan”. An NLP-model is then asked to predict the intensity
of emotion - angry. A system is called gender-biased when it
consistently predicts higher/lower scores for sentences carry-
ing female-names than male-names, or vice versa. The EEC
contains 7 templates of type: <person> and <emotion>.
The place of variable <person> can be filled by any of
60 gender-specific names or phrases. Out of 60, 40 are
gender-specific names (20-female, 20-male). Rest 20 are
noun phrases, particularly, 10 female-male pairs such as “my
mother” and “my father”. Variable <emotion> can replace
four emotions–Anger, Fear, Sadness, and Joy–each having 5
representative words 1. Thus, we have 1200 (60×5×4) sam-
ples for each template. In total we have 8400 (7×1200) sam-
ples equally divided in female and male-specific sentences
(60 × (5 × 4) × 7 = 4200 each) and 4-emotion categories
(5× 7× 60 = 2100 each). We refer readers to (2018) for an
elaborate explanation.

Evaluation Methodology To evaluate an NLP system for
its intrinsic gender-bias, we follow the same evaluation
scheme as in (Kiritchenko and Mohammad 2018). For a
given template T and emotion word E, i.e., T-E format in
EEC, we obtain 11 pairs of female-male intensity scores. One
of the pairs is obtained by averaging the system’s intensity
predictions of input sentences with gender-specific names.
The score pair consists of an average female score as its first
element and a male score as its second. The other 10 scores
are calculated from 10 noun phrase pairs used in the same
T-E format. Thus for 7 templates and 20 emotion words, we
have 7×20×11 = 1540 pairs of scores. We define ∆F↑−M↓
as the average difference in female to male scores for those
pairs with higher predicted intensity for females; vice versa
to this defines ∆M↑−F↓. The number of occurrences where
female scores are higher (#F↑−M↓), male scores are higher
(#M↑−F↓), and both female-male scores are equal (#F=M )
are also kept for a fine-grained evaluation.

5 BERT Induced Bias
As mentioned earlier, we hypothesize that downstream tasks
are prone to acquire gender-bias from BERT word embed-
dings. However, it is possible that a task-specific model
enhances or diminishes the BERT induced bias, or learns
its own bias. To prevent such scenarios, for all the tasks,
we use shallow MLP regressors without fine-tuning BERT
parameters. The simplicity of regressors will expose inherent
gender-bias in BERT. Next, we elaborate on the downstream
tasks, the MLP architecture, and the training procedure.

5.1 Downstream Tasks
Our bias evaluations are based on regression subtasks of
SemEval-2018 Task 1–Affect in Tweets (Mohammad et al.

1eg:- {angry, enraged} represents a common emotion, i.e., anger



Figure 1: MLP regressor trained on five individual regression tasks.
Input to the MLP is 768-dimensional vector mapping of [CLS]
token at BERT layerk.

2018). The sub-tasks are majorly classified in:

1 Emotion intensity regression (ER-tasks): Given a tweet
and an affective dimension ∈ {joy, fear, sadness, anger},
determine emotion intensity I–a real-valued score between
0 (low mental state) and 1 (high mental state).

2 Sentiment intensity regression (SR-task): Similar to ER
tasks, given a tweet, determine intensity I of the sentiment.

For all the five tasks, i.e., 4-ER tasks and an SR task, train
and test sets are provided with gold intensity scores.

5.2 BERT-based MLP regressor (BERT-MLP)
Since the [CLS] token was specifically introduced as a rep-
resentative of the input sequence, it is reasonable to use its
vector representations in downstream tasks (shown in Fig. 1).
For the sequence W , we obtain a deep contextualized vector
representation of [CLS], i.e., WCLS

k from layerk
2.

For each task, we train a 2-layer MLP regressor to predict
intensity Ik ∈ [0, 1] expressed by the sequence W , i.e., a
tweet. Hence we train-test 5 different regressors. Input to the
MLP is WCLS

k ∈ IR768, hidden layer carries 200 neurons
fully connected to the input vector, followed by Relu activa-
tion. The output is just an affine combination of the values
obtained after activation. The Adam optimizer minimizes
squared-loss between the MLP outputs and ground-truth in-
tensity values. We divide the dataset into batches of 200
samples. In each iteration, parameters are updated to reduce
loss accumulated in one batch. We score the models by calcu-
lating Pearson’s correlations between predicted and expected
intensity values 3. The MLP architecture is kept simple to
decipher features encoded in BERT word representations.
Thus, the task performance of an MLP will rely heavily on
the features provided by BERT. BERT columns in Table 2
and 4 show Pearson scores. We restrict our analysis to embed-
dings from deep layers in BERT i.e., layer11 and layer12.

2WCLS
k and tclsk represent the same vector.

3Following https://competitions.codalab.org/competitions/
17751#results

5.3 Equity Evaluation of BERT-MLP
We evaluate layer11 and layer12 embedding of BERT sepa-
rately. As shown in the Table 2 and 4, in columns correspond
to BERT, all five regressors show significant ∆ values 4. For
each task, we observe that the regressors consistently assign
high values to either of the genders. Moreover, not many
cases are seen where MLP’s assign equal scores to both the
genders, i.e., #F=M . We discuss the results in later sections.

6 Gender Debiasing
In this section, we aim to uncover principal directions where
BERT layers encode gender information. We hypothesize
that removing the word vector components from gender di-
rections will lead to reduced gender-bias in downstream tasks
utilizing BERT embeddings.

1 Independently for each BERT layer, we find a gender
direction that encodes gender information.

2 We evaluate the quality of obtained directions by defining
a new metric gender separability.

3 Subsequently, we propose Algorithm-1 to obtain fine-
grained gender directions and to introduce a new setting–
BERTDe–which lacks in gender-rich features.

Following Bolukbasi et al. (2016) work on identifying gen-
der axis (direction) in context-independent word embedding,
we extend it to extract geometric directions from contextu-
alized word embeddings of BERT. We hypothesize–For
every layer in BERT, there exists a low-dimensional context-
independent subspace that encodes gender information.

Thus, for each BERT layer layerk (0 ≤ k ≤ 12), we
aim to capture a d-dimensional gender subspace Bk spanned
by the basis vectors {b1k, . . . , bdk} ∈ IRdb . We define the
basis-vectors as gender directions. Ideally, the difference in
vector representations of He and She should show a major
component in gender directions. However, even in simple
static embedding like Glove, such vectors may not behave
as expected (Bolukbasi et al. 2016). The task of revealing
gender subspace becomes even more difficult in case of con-
textualized embeddings, i.e., a word can map to more than
one vector representations depending on the context. Such
embeddings may lead to inconsistency in extracted direc-
tions, and thus, subspace. We propose a way to identify a
static gender subspace Bk by enforcing context to have many
gender-specific words, all of which represent the same gender.
We further elaborate on the method below.

Definition pair Let Og := {(fi,mi)}gi=1 be the ordered
pair of words. The fi represents a noun that is commonly
used for a female. Similarly, mi carries a male notion 5.
Using Og , we form a definition pair of sentences:

Sf = w1 . . . f1 . . . fg . . . wn

Sm = w1 . . .m1 . . .mg . . . wn

4Delta values can be compared to models studied in (2018)
5We focus on those words having low word-sense ambiguity



The definition pair makes use of the Og in a close context.
We denote word at position i in sequence Sf and Sm as Si

f

and Si
m. The definition set (Si

f , Si
m) satisfies either of the

two conditions:
1 (Si

f , Si
m) ∈ Og;

2 Si
f = Si

m, if Si
f and Si

m are gender-neutral word.

From 10 gender pairs introduced in Bolukbasi et al. (2016),
we chose 9 and added {Queen,King} and {Aunt,Uncle}.
Thus,Og contains 11 gender pairs. Our experimental findings
suggest that more number of gender pairs make it difficult to
find principal directions. As mentioned before, we use Og

along with gender-neutral words to generate Sf and Sm
6.

Let uik and vik denote vector mapping of words Si
f and

Si
m at BERT layerk, respectively. Since Sf and Sm are

the same except for gender-specific words, we expect their
word vectors to have a close contextual relationship. Thus,
we conjecture that the difference vector Di

k = {vik − uik}
shows a noticeable shift in gender directions by canceling
out other encoded information such as context and word po-
sition. Later, we empirically show the importance of gender
directions extracted using difference vectors.

6.1 Gender subspace
Independently for each layerk, Principal Component Analy-
sis (PCA) over difference vectors Dk := {Di

k}ni=1 helps un-
cover gender subspace Bk. PCA(Dk) returns n-orthogonal
directions p1k, . . . , p

n
k in decreasing order of the explained

variance (EV). Each direction encodes a different notion that
supplements the abstract concept of gender. Higher EV sig-
nifies more crucial directions that define gender subspace.
However, such directions may not behave as expected and en-
code other information unrelated to gender. Initially, we base
our analysis on two principal directions i.e. p1k, p

2
k forming

the 2-dimensional gender subspace. Subsequently, we show
both the gender directions have a significant overlap in the en-
coded information. This gives an intuition of primarily using
the first principal component that leads to a 1-dimensional
subspace for gender.

Gender Separability Consider a direction l and vector rep-
resentation of words g1, g2 as x and y, where g1 is a mascu-
line word and g2 is feminine, or vice versa. We can find a
real value c such that:

〈x, l〉 ≥ c and 〈y, l〉 ≤ c (1)

c divides l in two rays (half spaces) each of which rep-
resents a unique gender. An ideal gender direction should
project a word-vector in gender-specific ray. Thus, we de-
fine gender-separability as the accuracy of projection-based
classification on the corresponding ray.

Gender Classification Dataset (Gen-data) We compiled
train-set from (Zhao et al. 2018c)7. The dataset consists of

6(see Appendix).
7https://github.com/uclanlp/gn glove/tree/master/wordlist

Data Gender #Samples Examples

Train

Female 222 actress,mama,madam,
princess,sororal

Male 222 actor,papa,sir,
prince,fraternal

Neutral 222 guest, beast, friend
mentor, outlier

Test

Female 404 chatelaine, ballerina, baroness,
barmaid, brunette

Male 595 adonis, barman,baron,
brunet, charon

Neutral 5701 abator, owner, bidder,
genius, whistler

Table 1: Distribution of Gen-data.

222 gender-word pairs, i.e., for each feminine word, there is
a masculine counterpart. To form test-set, we collect gender-
specific words from another source containing 595 male-
specific and 404 female-specific words 8. From this source,
we collected 595 neutral words and randomly split them to
assign 222 samples for training and rest for testing. Table 1
shows Gen-data statistics and samples.

We evaluate layer-specific gender subspaces for their gen-
der separability on Gen-Data, we evaluate the first two prin-
cipal directions p1k and p2k of a given layerk. To find layer-
specific c, i.e., cik for ith principal component (PC), we per-
form a grid search to maximize separability on the train-set
of Gen-data excluding gender-neutral words. We then test the
quality of separation on its test-set as shown in the Fig. 2. We
observe the first PC of all layers have high separability score.
Moreover, second PCs of middle layers performs as good as
respective first PCs. This observation raises a question:- is
second gender direction, i.e., p2k crucial to define the gender
subspace? We answer it by the following analysis:

Since all the contextual embeddings are transformations of
embedding at layer0, in Fig. 3, we plot the cosine similarity
between first principal gender direction of layer0 (p10) and
layerj (p1j ), where 1 ≤ j ≤ 12. The high cosine similarity 9

depicts passing of encoded gender information from layer0
and lesser new gender-specific features learned by following
layers. We also analyse cosine similarity between p10 and
p2j which is the second principal gender direction at layerj .
The similarity score increases in the middle layers which
supports our observation in Fig. 2 with high separability
values. Moreover, it also indicates that p2j ’s hardly encode
any extra gender-specific information keeping aside what is
acquired from p10.

Eliminating vector components in gender directions is ex-
pected to reduce gender-bias in downstream tasks. However,
due to non-ideal behavior, omitting a large number of di-
rectional components may cause representation noise and
hinder the quality of BERT embeddings. Moving forward,
we propose Algorithm-1 that aims to tackle this issue.

8https://github.com/ecmonsen/gendered words
9cosine of the angle between two random vectors in high dimen-

sions is zero with high probability.



Figure 2: Layer-wise gender separability on Gen-data when word
vectors are projected on first principal component (PC-1) and second
principal component (PC-2).

Figure 3: Cosine similarity between two vectorsCos(u, v) =
u·v

||u|| ||v|| . PC1-PC1, PC1-PC-2 denotes Cos(p10, p1j ) and
Cos(p10, p2j ), respectively. Algo1 denotes PCs obtained using
Algorithm1.

6.2 Reducing Gender Bias
For each layer in BERT, Algorithm-1 extracts first principal
gender directions p1j (referred as Pj) in a systematic way.
The layer0 maps WordPiece tokens of Sf and Sm to a set of
vectors ui and vi, respectively. PCA over difference vector
D0 = (v0−u0) gives P0 i.e. gender direction with maximum
explained variance. We remove components of v0 and u0 on
P0 by taking perpendicular projections. For a vector a, the
projection perpendicular to a unit vector b is defined as:

Proj⊥b(a) := a− 〈a, b〉b (2)

(Where 〈a, b〉 is inner product of vectors a and b.)

We feed the projected vectors v∗0 and u∗0 to the next layer,
i.e., layer1. The same procedure is repeated until final
layer layer12 and all the extracted principal components
P := P1, . . . , P12 are stored. It is worthwhile pointing that
the algorithm is different from independent layer-wise analy-
sis as each layer has missing gender information from layers
preceding it. The new cosine similarity scores show a signifi-
cant drop in Fig. 3 - dotted.

Removing Gender Component After obtaining layer-
wise gender directions P , we introduce a new BERT setting–
BERTDe. As an enhancement of BERT, BERTDe removes

ALGORITHM 1: Extracting layer-wise principal compo-
nent in Gender subspace.

Input : - Strings pair (Sm, Sf ), which differ only in
gender-specific words.

Output : - P=Layer-wise principal component set
{P0, . . . , P12}.

1 Wtf ← Tokenize(Sf ) /* WP Tokenization */

2 Wtm← Tokenize(Sm) /* WP Tokenization */

3 u0← Layer0(Wtf ) /* Context-independent input

vectors for Sf */

4 v0← Layer0(Wtm) /* Context-independent input

vectors for Sm */

5 D0← (v0 − u0) /* Difference vector */

6 P0← PCA(D0) /* PC with maximum EV */

7 for j← [1, 2, . . . , 12] do
8 u∗j−1 ← Proj⊥Pj−1(uj−1) /* Perpendicular

projection */

9 v∗j−1 ← Proj⊥Pj−1(vj−1)

10 uj← Layerj(u∗j−1)
11 vj ← Layerj(v∗j−1)
12 Dj← (vj − uj) /* Difference vector */

13 Pj← PCA(Dj)
14 end

gender components from a token’s vector representations.
Given an input sequence of tokens Wt to the layer0, we
obtain token-vectors W0 at its output. For each vector
ti0 in W0, we remove its component in direction P0, i.e.,
ti∗0 = Proj⊥P0(ti0). We denote the set of ti∗0 vectors as W ∗0 .
Unlike normal BERT settings which feed W0 as input to
Layer1, we feed W ∗0 . We iterate this process for every layer
layerj (0≤j≤12) which receives W ∗j−1 (j > 0) at input and
gives W ∗j at output by removing its vector components in
direction Pj . In the next section, we evaluate BERTDe on
EEC and compare its performance with BERT.

7 Equity Evaluation of BERTDe - MLP
We follow the same methodology as in Section 5.2, however,
by substituting BERT with BERTDe. For each task-specific
MLP trained on BERTDe layer11 and layer12, we perform
paired two-sample t-tests to determine whether the mean dif-
ference between male and female scores is significant. Low
p-values indicate a significant difference in model predictions
based on gender.

7.1 Results and Discussion
As shown in the Table 2 and 4, most of the BERTDe-MLP
regression models show an overall % decrease in ∆ val-
ues in both F>M (∆F↑−M↓) and M>F (∆M↑−F↓) cases.
Final-layer BERT-MLP models for joy, fear, and anger have
higher average intensity scores for male phrases than female,
while the opposite trend is seen in models for valence and sad-
ness. It is also noteworthy that the pre-final layer (layer11)
shows a somewhat opposite trend. Hence, we suspect the
BERT-induced bias depends on the which layer embedding
is used. Moreover, from p-values of BERT-based regressors,
we see much higher significant ∆ values as compared to



Emotion
Emotion Intensity Valence Intensity

BERT BERTDe BERT BERTDe

Pearson ∆F↑−M↓ ∆M↑−F↓ Pearson ∆F↑−M↓(%d) ∆M↑−F↓(%d) Pearson ∆F↑−M↓ ∆M↑−F↓ Pearson ∆F↑−M↓(%d) ∆M↑−F↓(%d)
Joy 0.666 0.0396 0.0402 0.660 0.0143(↓63.9) 0.0143(↓64.4)

0.659

0.0346 0.0376

0.670

0.0209(↓39.5) 0.0138(↓63.3)
Fear 0.581 0.0202 0.0244 0.593 0.0152(↓24.7) 0.0158(↓35.2) 0.0263 0.0244 0.0156(↓40.6) 0.0123(↓49.5)

Sadness 0.615 0.0380 0.0138 0.604 0.0178(↓58.9) 0.0097(↓29.7) 0.0272 0.0205 0.0153(↓43.7) 0.0118(↓42.4)
Anger 0.627 0.0074 0.0316 0.626 0.0121(↑63.5) 0.0149(↓52.8) 0.0219 0.0198 0.0130(↓40.6) 0.0119(↓39.8)

Table 2: Final-layer (layer12) of BERT and BERTDe equity evaluation of the five-intensity regression models. %d refers to
the percentage change in ∆ values. The p-values for 1) Emotion intensity models: {anger}≤ 0.05 (≥0.70∗); {joy, fear,
sad} ≤ 0.20 (≥0.70∗). 2) The valence intensity model (emotion-wise p-values): {anger}≤ 0.05 (≥0.75∗); {joy, fear,
sad}≤ 0.20 (≥0.70∗), where values with * denotes BERTDe-based MLP regressor.

Emotion
Emotion Intensity Valence Intensity

BERT BERTDe BERT BERTDe

#F↑−M↓ #M↑−F↓ δ (#F=M ) #F↑−M↓ #M↑−F↓ δ (#F=M ) #F↑−M↓ #M↑−F↓ δ (#F=M ) #F↑−M↓ #M↑−F↓ δ (#F=M )
Joy 92 291 198 2 197 177 20(↓178) 11(↑9) 62 322 260 1 227 147 80(↓180) 11(↑11)
Fear 177 204 27 4 175 199 24(↓3) 10(↑6) 105 276 171 4 207 165 42(↓129) 13(↑9)

Sadness 339 44 294 2 243 128 114(↓180) 14(↑12) 106 274 168 5 209 162 47(↓121) 14(↑9)
Anger 18 366 347 1 161 212 52(↓295) 12(↑11) 126 258 132 1 229 148 81(↓51) 8(↑7)

Table 3: Final layer of BERT and BERTDe equity evaluation: F↑−M↓, M↑−F↓, and M=F . δ = |#F↑−M↓ −#M↑−F↓|

Emotion
Emotion Intensity Valence Intensity

BERT BERTDe BERT BERTDe

Pearson ∆F↑−M↓ ∆M↑−F↓ Pearson ∆F↑−M↓(%d) ∆M↑−F↓(%d) Pearson ∆F↑−M↓ ∆M↑−F↓ Pearson ∆F↑−M↓(%d) ∆M↑−F↓(%d)
Joy 0.580 0.0436 0.0152 0.557 0.0195 (↓55.2) 0.0165(↑8.75)

0.658

0.0356 0.0118

0.653

0.0118(↓66.6) 0.0086(↓26.65)
Fear 0.475 0.0256 0.0241 0.497 0.0139(↓45.4) 0.0130(↓ 45.6) 0.0348 0.0113 0.0117(↓66.2) 0.0099(↓11.8)

Sadness 0.532 0.0282 0.0129 0.535 0.0156(↓44.4) 0.0133(↑2.8) 0.0192 0.0089 0.0185(↓3.38) 0.0113(↑26.6)
Anger 0.571 0.0123 0.0408 0.577 0.0133(↑8.6) 0.0124(↓ 69.4) 0.0185 0.0109 0.0177(↓4.24) 0.0115(↑5.57)

Table 4: Pre-final layer (layer11) of BERT and BERTDe equity evaluation of the five-intensity regression models. %d
refers to the percentage change in ∆ values. The p-values for 1) Emotion intensity models: {fear}≤ 0.01 (≥0.95∗); {anger,
joy, sad} ≤ 0.20 (≥0.85∗). 2) The valence intensity model (emotion-wise p-values): {anger, fear}≤ 0.05 (≥0.95∗); {joy,
sad}≤ 0.20 (≥0.85∗).

Emotion
Emotion Intensity Valence Intensity

BERT BERTDe BERT BERTDe

#F↑−M↓ #M↑−F↓ δ (#F=M ) #F↑−M↓ #M↑−F↓ δ (#F=M ) #F↑−M↓ #M↑−F↓ δ (#F=M ) #F↑−M↓ #M↑−F↓ δ (#F=M )
Joy 310 74 236 1 199 177 22(↓214) 9(↑8) 328 55 273 2 188 186 2(↓271) 11(↑9)
Fear 223 160 63 2 159 212 53(↓10) 14(↑12) 335 45 290 5 194 172 22(↓268) 19(↑14)

Sadness 281 99 182 5 210 169 41(↓141) 6(↑1) 283 85 198 17 202 173 29(↓169) 10(↑7)
Anger 31 352 321 2 145 225 80(↓241) 15(↑13) 269 109 160 7 217 155 62(↓98) 13(↑6)

Table 5: Pre-final layer BERT and BERTDe equity evaluation: Number of occurrences of F↑−M↓, M↑−F↓, and M=F . δ =
|#F↑−M↓ −#M↑−F↓|.

regressors using BERTDe. From Table 3 and 5, for all five
regressors, we observe a significant reduction in difference
between number occurrences where F>M and M>F , i.e.,
δ. We also observe an increase in cases when regressors
assign equal scores to both genders, i.e., #F=M . Unlike
BERT, models based on BERTDe show no consistency in
assigning higher intensity scores to either male or female.
Hence, simple MLP regressors based on BERTDe vectors
show an apparent gender unbiased nature on EEC.

7.2 Semantic Consistency
Gender debiasing of a model is desirable, however, it may
come at the cost of reduced model performance on the task.
In the case of BERTDe, removal of component in identified
directions can lead to a loss of other semantic information.
Thus, to check the semantic consistency of BERTDe, we
compared Pearson’s correlation score of BERT-MLP and
BERTDe-MLP regressors on the task-specific test-sets. As
depicted in the Table 2 and 4, there is no drastic reduction

in Pearson’s scores, confirming semantic is preserved. Thus,
removing the directional components reduces the gender-bias
induced by BERT, while maintaining the regressors perfor-
mance on the downstream tasks. Next, we define a gender
classification task to investigate the relevance of extracted
directions, i.e., how informative they are about the gender of
a given word.

8 Evaluation on Gender Classification

It is evident from the above analysis that BERTDe is effective
in reducing gender-biased predictions of MLPs. Moreover,
the semantic consistency proves BERTDe to be as effective as
BERT on all the five tasks. To substantiate that Algorithm-1
makes BERTDe word embedding deficient in gender-specific
features, we design another downstream task - gender classifi-
cation of a word. A naive solution to reduce gender-bias is to
remove all gender-specific words. We analyse the suitability
of this solution in the end.



Figure 4: BERT-CLS and BERTDe-CLS denote MLP accuracy
using layerk (x-axis) vectors in I1 setting. Similarly, BERT-Avg
and BERTDe-Avg refer to the I2 setting. Switching from BERT to
BERTDe, we see a significant drop in MLP gender-classification
performance in both I1 and I2 inputs cases.

8.1 Baseline Gender Classifier (GC)
First, we establish a gender classification baseline to com-
pare the performances of BERT and BERTDe. Input to
the baseline is WordPience tokenized w→ {w1, . . . , wN}.
We randomly initialize the WordPiece embeddings -
E: wi 7→ ti ∈ IR100∼U(−1, 1). The possibility of mul-
tiple subwords makes it intuitive to perform convolution
over ti’s (Kim 2014). The 1-dimensional convolution layer
Conv-1D consists of 32 filters each of size 1. Thus the in-
put tensor of shape N × 100 after convolution at stride 1
transforms to N × 32; this followed by global max-pooling
gives 1× 32 feature vector. The vector is passed through a
fully connected layer consists of 128 neurons, and an output
layer with sigmoid activation. We minimize the categori-
cal cross-entropy of the output against the target gender set
L ∈ {0, 1}|N |, where N : number of data samples, 1 and
0 are input labels for female and male, respectively (2-way
classification). We use Adam optimizer with learning rate
0.001. We randomly drop-out 20% of FC layer activations
to prevent parameter overfitting. Hyperparameters are tuned
to maximize average 10-fold cross-validation accuracy.

8.2 MLP Gender Classifier
Similar to Tenney et al. (2019), we create a 2-layer MLP
classifier. The architecture is very similar to Fig. 1 except
for MLP is used for classification. The input to BERT
is a word w. Given the output of BERT layerk, i.e.,
(tclsk , t1k, . . . , t

n
k , t

sep
k ), we analyse two different input settings

to MLP:

• I1 : Vector representation of [CLS], i.e., tclsk .

• I2 : Average of all token vectors tAvg
k :=

tclsk +
∑n

i=1 tik+tsepk

(n+2) .

For a layerk and input setting, we train a separate MLP
on the train-set of Gen-data and evaluate on its test-set. Each
MLP takes I1 or I2 at input and predicts gender. Thus, given
BERT model, we train-test 24 MLPs (12×2). The MLPs
have 100 hidden layer neurons. We determine hyperparam-
eters using a validation set comprised of the 10% samples
from the training set. Rest settings are similar to the baseline.

8.3 BERT-MLP vs BERTDe - MLP
Following the above-mentioned method, we evaluate MLP
classifiers based on BERT and BERTDe embeddings. As
shown in the Fig. 4, we find BERT-based MLPs outperform-
ing the gender classification baseline in both the setting I1
and I2. This depicts the existence of gender-rich features in
BERT provided embeddings. BERTDe-MLP shows much
poorer performance as compared to BERT-MLP. This ob-
servation makes it clear that removed directional components
from the embeddings omit gender-rich features, hence, the
obtained directions have a high magnitude of cosine similar-
ity with actual gender directions. Moreover, BERTDe-MLP
accuracy drops even below baseline at deeper layers, sug-
gesting the similarity magnitude increases as the embeddings
become deeply contextualized.

Layer BERT BERTDe

2-way 3-way 2-way 3-way
0 81.4 83.7 80.4(↓1.0) 81.4(↓2.3)
1 83.3 85.9 81.4(↓1.9) 81.6(↓4.3)
2 80.4 85.1 75.9(↓4.5) 79.0(↓6.1)
3 79.8 84.3 74.9(↓4.9) 83.1(↓1.2)
4 82.4 85.4 75.8(↓7.1) 82.3(↓3.2)
5 82.9 85.5 75.8(↓7.1) 81.2(↓4.3)
6 86.8 86.8 74.8(↓12.0) 81.2(↓5.6)
7 86.4 86.0 81.2(↓5.2) 79.1(↓6.9)
8 86.5 89.1 82.8(↓3.7) 70.9(↓18.2)
9 84.3 87.3 79.5(↓4.8) 71.9(↓15.4)

10 81.6 85.6 72.8(↓8.8) 74.7(↓10.9)
11 84.5 87.1 71.9(↓12.6) 74.8(↓12.3)
12 85.4 86.8 71.9(↓13.5) 67.9(↓18.9)
GC Male: 51.1 Male: 50.3

(Random) Female: 48.9 Female: 49.7

Table 6: Percentage of misclassified neutral words predicted as
Male.

Additionally, we train MLPs on a 3-way classification
task that includes gender-neutral words from Gen-data as a
part of training the MLPs and an extra category apart from
female and male, i.e., neutral. Table 6 shows the percentage
of neutral words misclassified in male class (I1 - setting). It
signifies that even for a gender-neutral word, BERT embed-
dings contain gender notion. Hence, simply removing the
gender-specific words from the input sequence would not be
a robust solution to tackle gender-bias in downstream appli-
cations. However, the misclassification percentage decreases
in case of BERTDe. Our proposed method does not need to
avail any gender-specific information of an input word.

9 Conclusion
We studied gender-bias induced by BERT in five down-
stream tasks. Using PCA, we identified orthogonal direc-
tions – defining a subspace – in BERT word embeddings
that encode gender informative features. We then introduced
an algorithm to identify fine-grained gender directions, i.e.,
1-dimensional gender subspace. Omitting word vector com-
ponents in such directions proved to be reducing gender-bias
in the downstream tasks. The method can be adapted to study
other social biases such as race and ethnicity.
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