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Abstract
Extracting structured knowledge from text is
a fundamental research problem in natural lan-
guage processing. Human conversations are a
rich source of both explicit and implicit knowl-
edge as it requires contextual understanding,
planning, inference, and several aspects of rea-
soning including causal, temporal, and com-
monsense reasoning. Extracting such knowl-
edge from conversations is a challenging prob-
lem and could be conducive to improving sev-
eral downstream applications. In this paper,
we introduce DAIKE – a manually annotated
dataset of explicit and implicit knowledge ex-
tracted from dyadic conversations. The anno-
tated knowledge is categorized with respect to
the presence of commonsense knowledge (e.g.,
causal, conditional, temporal). We setup three
different tasks conditioned on the annotated
dataset: Dialogue-level Natural Language In-
ference, Span Extraction, and Multi-choice
Span Selection. Baseline results obtained with
transformer-based models show that the task is
especially difficult, paving the way for promis-
ing future research. The dataset and the base-
line implementations are available at https:
//github.com/declare-lab/DAIKE.

1 Introduction

There has been much work on extracting struc-
tured knowledge from natural language text. How-
ever, there has been only little research to distin-
guish implicit knowledge from explicit knowledge
present in the text. Explicit knowledge can be
relatively easily parsed out using semantic pars-
ing (Speer et al., 2017) and simple co-reference
resolution (Joshi et al., 2019). Implicit knowledge,
however, involves non-trivial inference, which be-
comes even more challenging on dialogue data due
to the contextual interplay and latent background
knowledge shared between the speakers. Extrac-
tion of both explicit and implicit knowledge could
be conducive to improved question-answering sys-
tems and richer knowledge bases. To this end, we

1 (A) Gordon, you're ever so late.

Yes, I am sorry. I missed the bus.

Well, I missed several buses.

How on earth can you miss several buses?

I, ah ..., I got have late.

But there's a bus every ten minutes, and you are 
over 1 hour late.

Have you got it now?

Well, I ... I lost my wallet, 

and I ...

Oh, come on, Gordon, it's the afternoon now.  
Why were you late really?

This morning. I mean ...

This tardiness causes embarrassment every 
time.

When?

Yes, I found it again.
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Figure 1: Example of various types of knowledge
triplets in a dyadic dialogue; the red and green rela-
tions signify implicit and explicit triplets, respectively,
whereas the italicized are commonsense.

construct a dataset of Dialogues with Annotated Im-
plicit KnowledgE (DAIKE), as illustrated in Fig. 1,
which captures the relation between two textual
spans appear in the dialogue. A span can consti-
tute one or multiple entities, objects, actions, states,
events, that can be extracted from the dialogue. The
relations are commonsense based, as elaborated in
§3.2. Each knowledge triplet is tagged either as
explicit or implicit.

We define three tasks on this dataset — (i) Dia-
logue-level Natural Language Inference, (ii) Span
Extraction, and (iii) Multi-choice Span Selection —
and setup baselines for each of them. Our baselines
based on transformer language models found these
tasks to be non-trivial and difficult to solve.

The Importance of this Dataset: The immedi-
ate aim of this research is to develop a rich knowl-
edge base from a dialogue consisting of implicit
and explicit knowledge, and then use that to per-
form inference and reasoning. We formulate non-
trivial natural language inference (NLI) and ques-
tion answering (QA) tasks that can be used to
benchmark such reasoning capabilities of natural
language processing models.

https://github.com/declare-lab/DAIKE
https://github.com/declare-lab/DAIKE


2 Related Work

Recently, language models have been scaled up
a lot and have seen a performance improvement
on various tasks (Brown et al., 2020; Raffel et al.,
2020). However, it has been proved that declara-
tive knowledge is still valuable, especially implicit
relationships that are hardly acquired by the state
of the art models (Hwang et al., 2020).

The commonsense knowledge bases widely used
are of large scale and mainly based on crowd-
sourced effort. ConceptNet (Speer et al., 2017)
is a semantic network with nodes composed of
common words or phrases in their natural language
form. It contains 34 relations, including taxonomic,
temporal, and causal ones, such as MotivatedBy-
Goal and Causes. However, the knowledge in Con-
ceptNet is annotated solely based on the first en-
tity without any other context, making it difficult
to capture the long-tail knowledge outside of the
most common ones. With a focus on inferential
knowledge, ATOMIC (Sap et al., 2019) consists of
nine relations, such as xIntent (the intent for per-
sonX’s action) and xEffect (the effect of the event
on personX). It covers knowledge around agents
involved in the event for if-then reasoning, includ-
ing subsequent events, mental state, and persona.
In addition to being non-contextual, it also ignores
causal relationships between events not carried out
by a person. In contrast, our work captures rela-
tionships between spans across multiple turns in
dialogues. Benefited from the dialogue aspect of
our data, we also manage to cover implicit knowl-
edge that requires context from conversations to
make sense.

More recent work such as GLUCOSE
(Mostafazadeh et al., 2020) captures implicit
knowledge across multiple sentences. It is
annotated based on ROCstories (Mostafazadeh
et al., 2016), where each story consists of five
short sentences. Our work instead annotates on
dialogues, which have more complicated sentences
and spoken conversational exchange.

3 Background

The primary impetus behind this dataset is the
distillation of knowledge in the form of standard
knowledge triplets that can be inferred only through
commonsense reasoning. We focus on conversa-
tions as our data source, with the choice being
motivated by the fact that part of the context in
conversations is naturally implicit and interlocutor

dependent (Grice, 1975). Commonsense knowl-
edge is considered to be the set of all facts and
knowledge about the everyday world which is as-
sumed to be known by all humans (Davis, 2014).
For this very reason, human-to-human dialogues –
typically guided by the Gricean maxims of human
interactions – tend to avoid explicit mentions of
commonsense knowledge and the associated rea-
soning steps. It is thus reasonable to assume that
conversations are generally likely to hold more
context-specific inferable implicit knowledge than
monologues. This ensures a rich dataset with plenty
of contextual implicit knowledge and a reasonable
amount of explicit knowledge.

Two distinct spans (e.g., events, entities) in a di-
alogue may have an implicit connection that can be
trivial for humans to interpret using commonsense
knowledge and reasoning, but can be challenging
for machines. Uncovering implicit knowledge has
the potential to enable many important tasks, which
we focus on later on. In this work, we propose
a dataset that contains manually labeled implicit
knowledge present in dyadic dialogues that require
commonsense knowledge to infer. We use this
dataset to evaluate pre-trained language models’
ability for commonsense-based implicit knowledge
inference.

The extracted triplets, of the form (h, r, t) or al-
ternatively h

r−→ t, consist of a head (h) and a tail
(t) span and the directed relation (r) between them.
These spans are representative of some events, ac-
tions, objects, entities, and so on. The relation r
is directed and comes from a predefined set of re-
lations R that describe the relationship between
the head and tail spans within the context of the
conversation — illustrated in Fig. 1 with the ar-
rows between spans. Notably, the relation setR is
intended to be generic in nature, rather than specif-
ically factual or taxonomic, so as to accommodate
wide categories of knowledge (§3.2) inferred from
the context of the conversation.

3.1 Types of Triplets
The extracted triplets are either explicit or implicit
as defined below:

Explicit triplets represent knowledge (see
Fig. 2a) that is overtly expressed in an utterance
in a dialogue. Fig. 1 illustrates one such anno-
tated instance in utterance 13 — tardiness Causes−−−−→
embarrassment — where the triplet is worded ver-
batim in a head-relation-tail sequence. The head
and tail span may contain some pronouns that can



This tardiness causes embarrassment every 
time. Causes

Your main duty is to answer the phone calls and 
transfer them to the person wanted .

IsA

1 (B)

1 (B)

(a)

Good morning , sir . Can I help you ?

Yes , I want to deposit 1000 Yuan in my bank account . 2 (B)

1 (A)

Please fill out this deposit form , first .3 (A)

HasPrerequisite

(b)

1 (A)

Buy a new cell phone
CausesDesire

HasPrerequiste

MotivatedByGoal

Awful ! My cell phone is out of service again . Fred , can 


you lend me some money ?

(c)

Figure 2: (a) Explicit, (b) implicit knowledge extraction from dialogues. (c) Intermediate latent spans and triplets.

be decoded by simple co-reference resolution. In
the presence of complex co-reference however the
context suggests many possible candidates, and the
triplet is implicit.

Implicit triplets, on the other hand, are not di-
rectly expressed in the dialogue and must be in-
ferable through commonsense reasoning using the
contextual information present in the dialogue. In-
stances of such triplets are shown in Fig. 1 and 2b
with the relations in red font.

Why Focus on Implicit Triplets? As pointed
out earlier, extracting explicit knowledge from a
conversation or any natural language text is rel-
atively straightforward and has been studied in
much detail in the literature (Auer et al., 2007;
Carlson et al., 2010; Speer et al., 2017). The
much more challenging problem, however, is to
extract or distill implicit knowledge. For exam-
ple, in Fig. 1 the triplet miss several buses Causes−−−−→
over 1 hour late requires commonsense reasoning
and knowledge about the world. Similarly, another
triplet lost my wallet Causes−−−−→ late requires multi-
utterance reasoning with contextual understanding
to be extracted. Such distillation is not covered by
the explicit-knowledge extraction framework.

The extraction of such implicit knowledge also
requires contextual understanding and complex
commonsense reasoning involving multiple steps
and utterances. Thus, the extraction of implicit
knowledge is challenging and a focus of this work.

Latent Spans and Differences with GLU-
COSE (Mostafazadeh et al., 2020): As argued
earlier, annotating implicit triplets often requires
multi-step reasoning. In such cases, one or more in-
termediate spans (which may not be present in the
dialogue) may be required to explain the relation
between the constituting spans. Readers are urged
to check Fig. 2c for one such example. Annotators
were given the freedom to identify such interme-
diate steps when they deemed so. However, such
cases are infrequent in our dataset and, thus, we
have chosen to omit the intermediate spans in our

experimental studies for the sake of simplicity. We
leave the intermediate step modelling as a direction
for future work.

In this context, it is also important to highlight
the fundamental differences between our dataset
and GLUCOSE (Mostafazadeh et al., 2020): (1) In
our dataset, the knowledge represented by the spans
and the relation connecting them is true (valid)
given the context, but establishing this connection
using an explicit relation requires complex com-
monsense inference and understanding of the dis-
course. The resulting triplet is thus valid in the
context and grounded by the context. This is sim-
ilar to the deductive commonsense reasoning as
defined by (Davis, 2014). GLUCOSE however fo-
cuses on abductive commonsense inference, where
given an event/state and its context, the annota-
tors provided inferred speculative causal explana-
tions of the event (state) according to their world
and commonsense knowledge. These explanations,
although they may fit in the given context, may
not always be entailed by it. As a consequence,
GLUCOSE is conducive to generative modeling,
whereas our dataset leads to extractive modeling.
(2) GLUCOSE has a limited set of relations, where
inference is only performed across the following di-
mensions: cause, enable, and result in. In contrast,
we have a much more diverse set of relations, which
we describe in §3.2. (3) We construct our dataset
based on conversations between two humans, while
GLUCOSE is built using monologue-like stories
that have significant differences with respect to the
discourse structure and semantics of dialogues.

3.2 Types of Relations

Our proposed DAIKE dataset contains 25 main and
6 negated relations. Among the main 25 relations,
19 have been adopted from ConceptNet (Speer
et al., 2017). We introduce 6 new relations to cover
some aspects that are not covered by ConceptNet.
Brief explanations, examples, and the new relations
we introduce are shown in Table 1.
We categorize the different relations as follows:



Category Relation Explanation Example

Attribution

Capable Of Something that A can typically do is B. knife → cut
Depends On* A depends on B. postage fee → weight of the post

Has A
B belongs to A, either as an inherent part or due to a social construct of
possession.

bird → wing; pen → ink;
gearshift → car

Has Property A has B as a property; A can be described as B. ice → cold
Has Subevent A and B are events, and B happens as a subevent of A. eating → chewing
Is A A is a subtype or a specific instance of B; every A is a B. car → vehicle; Chicago → city
Manner Of A is a specific way to do B. Similar to ”Is A”, but for verbs. auction → sale

Causal
Causes A causes B to happen. exercise → sweat
Causes Desire A makes someone want B. having no food → buy food
Implies* A implies B. wet cloth → caught in rain

Comparison

Antonym

A and B are opposites in some relevant way, such as being opposite ends
of a scale, or fundamentally similar things with a key difference between
them. Counter-intuitively, two concepts must be quite similar before people
consider them antonyms.

black←→ white; hot←→ cold

Distinct From A and B are distinct member of a set; something that is A is not B. red←→ blue; August←→ September
Similar To A is similar to B. mixer←→ food processor

Synonym
A and B have very similar meanings. They may be translations of each other
in different languages.

sunlight←→ sunshine

Conditional Has Prerequisite In order for A to happen, B needs to happen; B is a dependency of A. dream → sleep

Intentional

Desires
A is a conscious entity that typically wants B. Many assertions of this type
use the appropriate language’s word for ”person” as A.

person → love

Motivated By Goal
Someone does A because they want result B; A is a step toward accomplish-
ing the goal B.

compete → win

Obstructed By A is a goal that can be prevented by B; B is an obstacle in the way of A. sleep → noise
Used For A is used for B; the purpose of A is B. bridge → cross water

Social Social Rule* A is the social norm for when B happens or during B. apology → late

Spatial
At Location A happens at location B, or B is a typical location for A. try clothes → changing room
Located Near A and B are typically found near each other. table → chairs

Temporal
Before* A starts/ends before B. brush teeth → go to bed
Happens On* A happens during B. celebration → birthday
Simultaneous* A and B happens at the same time. heavy sports → heavy breath

Table 1: Annotated relations in our dataset. * indicates new relations introduced by us that are not present in ConceptNet.←→ in
the examples indicate symmetric relations. In addition to the above, we also have a few negation relations as illustrated in §3.3.

Attribution. Relations that indicate attributes,
properties, and definitions of concepts: (i) Capable
Of, (ii) Depends On, (iii) Has A, (iv) Has Property,
(v) Has Subevent, (vi) Is A, and (vii) Manner Of .

Causal. Relations that indicate cause and effect
of events: (i) Causes, (ii) Causes Desire, and
(iii) Implies.

Comparison. Relations that indicate compari-
son, similarity, or dissimilarity between concepts:
(i) Antonym, (ii) Distinct From, (iii) Similar To, and
(iv) Synonym.

Conditional. This category, having only one re-
lation Has Prerequisite, indicates dependency of
one event on the other.

Intentional. Relations that indicate the intent or
usage of an entity or a person: (i) Desires, (ii) Mo-
tivated By Goal, (iii) Obstructed By, and (iv) Used
For.

Social. The category involves social common-
sense relations specifying social rules, conventions,
norms, and suggestions. The relation in this cate-
gory is: (i) Social Rule.

Spatial. This category encompasses relations
which signifies spatial properties, such as location

of events, entities, actions. The relations include:
(i) At Location, and (ii) Located Near.
Temporal. This category involves the idea of
time considering the start, end, duration, and order
of events. The constituent relations are: (i) Before,
(ii) Happens On, and (iii) Simultaneous.

3.3 Negative and Symmetric Relations
Apart from the relations in Table 1, the negations
of some of these relations are necessary to form the
triplets during annotation. These negated relations
are (i) Not Causes, (ii) Not Causes Desire, (iii) Not
Has Property, (iv) Not Implies, (v) Not Is A, and
(vi) Not Motivated By Goal.

It should be noted that there are some symmetric
relations1 in our relation set. The set of symmetric
relations RS contains (i) Antonym, (ii) Distinct
From, (iii) Similar To, (iv) Synonym, (v) Located
Near, and (vi) Simultaneous.

4 Dataset Construction
4.1 Source Datasets of Dialogues
The annotation is performed on the following
datasets containing dyadic dialogues:

1A relation R is considered symmetric if the validity of
A

R−→ B implies the validity of B R−→ A and vice versa.



DailyDialog (Li et al., 2017) is aimed towards
emotion and dialogue-act classification at utterance
level. The conversations cover various topics rang-
ing from ordinary life, work, and relationships, to
tourism, finance and politics.
MuTual (Cui et al., 2020) is a manually annotated
dataset for multi-turn dialogue reasoning. It was
introduced to evaluate several aspects of dialogue-
level reasoning in terms of next utterance predic-
tion given a dialogue history. These aspects include
attitude reasoning, intent prediction, situation rea-
soning, multi-fact reasoning, and others.
DREAM (Sun et al., 2019) is a dialogue-based
multiple-choice reading-comprehension dataset
collected from English as foreign language exams.
This dataset presents several challenges as it con-
tains non-extractive answers that require common-
sense reasoning beyond a single sentence.

In total, we sampled 807 dialogues from the
three datasets. Each sampled dialogue has 5 to 12
utterances, and each constituent utterance has no
more than 30 words.

4.2 Annotation Process
Annotation guidelines. The annotators are in-
structed to identify either explicit and implicit
knowledge in a dialogue and represent them in
terms of triplets (§3.1). Such a triplet consists of
a pair of spans, say A and B, and an appropriate
relation R between them, denoted as A R−→ B. A
span is defined as a word, phrase, or a sub-sentence
unit of an utterance that represents some concept
such as an entity, event, action. The annotators are
instructed to meet the following constraints during
the annotation:

• The extracted triplets must be entailed by the
conversation to be valid.

• The spans of a triplet should be as short and con-
cise as possible. Also, a triplet may connect a pair
of spans from distinct utterances in a dialogue.

• Multiple distinct valid relations between the same
pair of spans are allowed. All these relations
correspond to distinct triplets.

We used a web-based tool called BRAT (Stene-
torp et al., 2012) for the annotation. The annotators
are three PhD students who have thorough knowl-
edge about the task. They were first briefed about
the annotation rules, followed by a trial with a
few samples to evaluate their understanding of the
annotation guidelines and ability to extract both

explicit and implicit triplets. Although annotators
extract both types, they were instructed to focus
more on annotating implicit triplets since extract-
ing those are more challenging. The trial stage was
conducted to ensure that annotators are well-versed
in annotating high quality triplets in the final phase.

4.3 Annotation Verification and Agreement
Each dialogue is primarily annotated by a single an-
notator. We then verify the validity of the annotated
triplets using the following strategy:

1. All extracted triplets are independently vali-
dated by two other validation annotators, in
terms of their inferability from their source dia-
logues.

2. Unanimously agreed-upon valid triplets are kept,
while unanimously agreed-upon invalid triplets
are discarded. In the case of a disagreement, we
bring in a third annotator to break the tie.

3. The final set of valid triplets is labelled as being
explicit or implicit by the same two annotators
as step (1) . The majority vote is assigned as the
final label. Similar to the previous step, in case
of a disagreement, we bring in a third annotator
to break the tie.

After this stage, we obtained a Cohen’s Kappa inter-
validation-annotator agreement of 0.91 for triplet
verification and 0.93 for knowledge type labelling.
We found that the number of explicit triplets in the
final annotated dataset is significantly lesser than
implicit triplets since the informal nature of the
source datasets’ conversations enables the extrac-
tion of much more frequent implicit triplets than
explicit ones. Statistics of the annotated dataset are
shown in Table 2.

5 Experimental Setup and Results

We formulate three distinct tasks from DAIKE
dataset: 1) Dialogue-level Natural Language In-
ference, 2) Span Extraction, and 3) Multi-choice
Span Selection.

5.1 Dialogue-level Cross Validation
We consider a dialogue-level cross-validation strat-
egy to benchmark our models. We partition the
annotated dialogues into five disjoint and roughly
equal-sized folds. Per cross-validation round, the
triplets from four folds are considered for training,
and the remaining one fold is used for test.



Description Instances

# Dialogues/# triplets in DailyDialog 245/1286
# Dialogues/# triplets in MuTual 182/658
# Dialogues/# triplets in DREAM 380/2595
# Dialogues/# triplets Total 807/4539

# Dialogues with # triplets < 3 142
# Dialogues with # triplets between 3-5 312
# Dialogues with # triplets between 5-10 281
# Dialogues with # triplets > 10 72
Average # triplets per dialogue 5.62

# Explicit triplets 204
# Implicit triplets 4335

# Triplets with spans from Utt. distance = 0 1009
# Triplets with spans from Utt. distance = 1 1490
# Triplets with spans from Utt. distance between 2-5 1501
# Triplets with spans from Utt. distance between 6-8 401
# Triplets with spans from Utt. distance > 8 138

# Triplets having spans from same speaker 2475
# Triplets having spans from different speakers 2064

# Span pairs with single relation 4203
# Span pairs with multiple relations 164

Table 2: Statistics on our dataset DAIKE. Please refer to the
appendix for frequency statistics of the relations.

5.2 Task 1: Dialogue-level Natural Language
Inference (DNLI)

Natural language inference (NLI) is the task of
identifying if a “hypothesis” is true (entailment),
false (contradiction), or undetermined (indepen-
dent) given a “premise”. We extend this definition
to conversations and propose Dialogue-level Natu-
ral Language Inference (DNLI), which is the task
of determining whether a knowledge triplet (hy-
pothesis) is true or false given a dialogue (premise).

It should be noted that most NLI datasets such as
SNLI (Bowman et al., 2015), MultiNLI (Williams
et al., 2017), SciTail (Khot et al., 2018) consist of
a single sentence hypothesis and premise, whereas
for DNLI the hypothesis and the premise are a
triplet and a conversation, respectively.

For our experiments, the hypothesis is formed
by concatenating the elements of the triplet h r−→ t
in h, r, t order. Similarly, the premise is formed by
concatenating the utterances of the dialogue.

5.2.1 Creating Negative Examples
Let C be a conversation, T be the set of all valid
triplets in C, and A

R−→ B be one such valid triplet
in T . We denote R: set of all relations; RS : set
of symmetric relations. The samples with valid
triplets as hypotheses are termed as positive exam-
ples. The contradicting triplets/hypotheses for the
negative samples are created from T as follows:

Reverse Relation Direction. In A
R−→ B, if R /∈

RS , then B
R−→ A is a contradicting hypothesis.

Substitute Relation Type. For A R−→ B, another
relation Q is randomly sampled from R \ {R} and

A
Q−→ B is considered a contradicting hypothesis.

Substitute Span. For A
R−→ B, either A or B

is replaced with another random span X from the
other triplets in set T . X R−→ B or A R−→ X is then
considered a contradicting hypothesis.

Combination of All. A combination of the
above three strategies can also be used to create
the contradicting hypothesis. We ensure that the
contrived contradicting hypotheses do not appear
in the set of annotated triplets T .

The above strategies allow us to create multi-
ple negative samples from a positive sample. In
our experiments, we had two and eight negative
samples per positive sample in the training and test
split, respectively. We intentionally keep fewer neg-
ative samples in the training data to evaluate the
generalization capacity of the models on a more
diverse range of negative samples in the test data.
Fold-wise statistics are shown in Table 3.

Split Label Fold1 Fold2 Fold3 Fold4 Fold5

Train Positive 3627 3630 3631 3630 3638
Negative 6441 6469 6527 6492 6470

Test Positive 912 909 908 909 901
Negative 7425 6876 6989 7061 7187

Table 3: Cross validation fold statistics for Task 1: DNLI.

5.2.2 Baseline
RoBERTa-large Fine-tuned on MNLI. We
use the pretrained roberta-large-mnli
model (Liu et al., 2019) to benchmark this task.
The input to the model is: <CLS> Premise
<SEP> Hypothesis <SEP>. The classifica-
tion is performed on the <CLS> token vector from
the final layer. We choose this model as it has
been fine-tuned on the MNLI dataset and shows
impressive performance on a number of NLI tasks.

5.2.3 Results
The performance of the RoBERTa-MNLI model
is reported in Table 4. As DNLI is a classifica-
tion task, we report macro F1, weighted F1, and
precision and recall over the positive examples
(with valid triplets). We notice that the metrics are
quite consistent across the five different folds and
thus we report our conclusion against the average
score. We obtained an average weighted F1 score
of 85.78%. However, the macro F1 score is notice-
ably lower at 69.83%, suggesting that the model
performs poorly on the less-frequent positive ex-
amples. The recall score suggests that 76.85% of
the valid hypotheses are correctly identified by the



Metric Fold1 Fold2 Fold3 Fold4 Fold5 Avg.

Macro F1 69.15 71.07 68.14 71.29 69.49 69.83
Weighted F1 86.76 85.48 84.07 86.42 86.17 85.78
Precision Positive 35.79 39.18 34.87 39.37 37.05 37.25
Recall Positive 77.55 78.54 77.56 78.16 72.45 76.85

Table 4: Results for the RoBERTa-MNLI model in Task 1:
Dialogue-level Natural Language Inference (DNLI).

model. However, the precision score is quite low at
37.25%, suggesting that almost 2/3-rd of the pre-
dicted valid hypothesis are in-fact invalid. Without
fine-tuning, the model produces much lower macro
F1 of 17.76%, precision of 15.06%, and recall
of 47.4%. The state-of-the-art RoBERTa MNLI
model is thus not very capable of correctly iden-
tifying triplets entailed by the conversation. We
conclude that knowledge inference from conversa-
tional context is not straightforward for pretrained
language models.

5.3 Task 2: Span Extraction
Span Extraction is defined as identifying the tail
span B, given the head span A, the relation R
between A and B, and the conversation C where
A

R−→ B is encoded. It is analogous to the task
of node prediction in knowledge bases, where the
missing tail node B in A

R−→? is to be predicted.
In this paper, Span Extraction is formulated as

a Machine Reading Comprehension (MRC) task
similar to SQuAD (Rajpurkar et al., 2016) where a
question is to be answered from a given passage of
text or more generally context. The equivalencies
with MRC are defined as follows:
Context. The entire conversation C is treated as
the context, as the span B in the triplet A R−→ B
can come from any utterance of C.
Question and Answer. For each relation type R,
we create a question template that includes a place-
holder for span A and asks for span B as the an-
swer. The templates are filled with the appropriate
valid triplets to generate the question-answer pairs.
Please refer to the question template in the supple-
mentary material.

5.3.1 Baselines
We use two pretrained transformer-based models to
benchmark the Span Extraction task. The method-
ology described in BERT QA models (Devlin et al.,
2019) is used to extract the tail-spans/answers.

RoBERTa Base. We use the roberta-base
model (Liu et al., 2019) as a baseline model.
SpanBERT Fine-tuned on SQuAD. We use Span-
BERT (Joshi et al., 2020) fine-tuned on SQuAD

2.0 dataset as the other baseline model.

5.3.2 Evaluation Metrics
EM (Exact Match). % of the predicted answers
that are identical to the gold answers. NM (No
Match). % of the predicted answers that bear no
match with the gold answer. F1: The F1 score
introduced by Rajpurkar et al. (2016) to evaluate
word-level overlap of predictions with the gold
answers for extractive QA models.

5.3.3 Results

Model Metric Fold1 Fold2 Fold3 Fold4 Fold5 Avg.

SpanBERT
EM 29.2 28.35 26.57 31.54 26.37 28.41
NM 46.47 48.71 52.91 47.48 50.0 49.11
F1 43.72 42.27 39.31 44.22 40.77 42.06

RoBERTa
EM 15.87 13.18 12.1 15.12 13.48 13.95
NM 57.36 56.71 61.57 53.22 57.4 57.25
F1 31.31 30.83 28.93 34.38 31.86 31.46

Table 5: Results for Span Extraction task. Higher EM, F1,
and lower NM scores are better.

The results for this task is reported in Table 5. We
notice that the SpanBERT model performs signif-
icantly better than the RoBERTa model. This is
expected as SpanBERT has been pretrained with
a different objective function and it particularly
excels at span extraction tasks, such as, question
answering. However, the EM score of 28.41% and
the F1 score of 42.06% for the superior SpanBERT
model is still subpar. The EM score suggests that
the model extracts the exact correct answer less
than 1/3-rd of the time. The NM score also indi-
cates that the extracted answer and the actual an-
swer have no overlap around half of the time. With-
out fine-tuning, the SpanBERT model produces an
EM score of 7.96% and a F1 score of 20.78%,
much lesser than the fine-tuned model. We con-
clude that the state-of-the-art pretrained language
models struggle with extracting missing spans.

5.4 Task 3: Multi-choice Span Selection
Multi-choice Span Selection is motivated by the
SWAG commonsense inference task (Zellers et al.,
2018). In SWAG, given a partial description of a
situation, the appropriate ending is to be selected
from a given list of choices using commonsense
inference. In our case, Multi-choice Span Selec-
tion is formulated as a multiple-choice question
answering task. Similar to the previous task, given
a conversation C and partial information about a
triplet A R−→?, the goal is to predict the missing
span B as an answer to a question created from A
and R. However, in contrast to task 2, the miss-
ing span B has to be selected from a list of four



possible answers S = {s1, ..., s4}. The context,
question, and answers are created as follows:
Context and Question: Both the context and the
question construction follow §5.3.
Correct and Confounding Options: The options
include the target answer and the three confounding
options that are extracted from the same context .

5.4.1 Creating Confounding Options
To mitigate the stylistic artifacts that could give
away the target answer (Gururangan et al., 2018;
Poliak et al., 2018), the confounding options are
generated in an adversarial fashion.

Generating Confounding-option Candidates.
We first select a large number of spans from C to
form a confounding-option collection N by lever-
aging the SpanBERT fine-tuned on the samples of
Task 2 (§5.3). We feed each individual utterance as
the context, and the question created from A and
R to the Task-2 fine-tuned SpanBERT. This leads
to one or two candidate answers (spans) per con-
textual utterance per question, averaging around 30
confounding spans per question. We discard the
spans that form a valid triplet with A and R.

Adversarial Filtering. Once we have the collec-
tion N , we follow Zellers et al. (2018) to filter the
confounding options generated in §5.4.1.

Check Appendix Section A for details. We use
roberta-base model to filter out stylistic pat-
terns. During the filtering process, discriminator
prediction accuracy decreased from 0.55 to 0.27,
suggesting the method’s effectiveness in removing
easy confounding candidates with stylistic patterns.

5.4.2 Baseline
We experiment with bert-base-uncased and
roberta-base on the adversarially created
dataset. The input to the models is the concatena-
tion of conversation C, question Q, and candidate
answers Aj , j ∈ {1, ..., 4}: <CLS> C <SEP>
Q <SEP> A j <SEP>. Each score is predicted
from the corresponding <CLS> token vector and
the highest scoring one is selected as answer.

5.4.3 Results
The results reported in Table 6 indicate the im-
portance of contextual information in improving
models’ performance. Our human verifiers could
also predict the answers significantly more accu-
rately when contextual information was available.
It is worth noting that all the pre-trained language
models perform poorly in this task and the ob-

Model Setting Fold1 Fold2 Fold3 Fold4 Fold5 Avg.

BERT C&Q 60.35 58.96 51.84 61.62 60.55 58.66
Q 47.21 50.89 51.25 54.46 47.84 50.33

RoBERTa C&Q 61.16 51.05 65.28 73.31 62.04 62.57
Q 51.05 62.04 56.60 58.92 55.76 56.87

Human C&Q 89.90 82.69 83.02 80.77 80.78 83.43
Q 69.39 67.31 60.00 65.38 71.15 66.45

Table 6: Results for Multi-choice Span Selection task. C&Q
−→ model input is the Context and the Question; Q −→ model
input is only the Question.

tained results are far from reaching the human-
level performance. Besides, the accuracy score for
bert-base-uncased and roberta-base
without fine-tuning are 25.60% and 26.22% re-
spectively which is similar to a random base-
line (25.00%), confirming the conclusion in Task
2 (§5.3) that current language models have difficul-
ties in predicting the missing span.

Performance across Relation Categories. We
report the results across different relation categories
for each task with the corresponding best perform-
ing models in Table 7. We notice that Spatial is one
of the top-performing categories across all three
tasks. Performance in Attribution and Temporal
category are also reasonably well in Task 1 and
Task 1, 2 respectively. Interestingly, the result of
Temporal category in Task 3 is the worst. The per-
formance in Causal and Conditional category is
around the average mark across all three tasks. This
implies that pretrained language models find it dif-
ficult to understand the concept of causal events or
dependent events. Finally, we observe that the per-
formance in Social category is the worst or among
the worst for all the tasks, suggesting that the mod-
els find it very challenging to reason about social
norms, rules, and conventions.

Task Attribution Causal Comparison Conditional Intentional Social Spatial Temporal

1 74.97 67.26 68.75 68.51 70.49 58.97 79.06 71.56
2 43.34 38.04 36.78 38.97 46.70 28.34 57.41 54.26
3 64.64 61.20 58.76 55.72 63.34 58.00 71.20 54.53

Table 7: Average five-fold Macro-F1, F1, and Accuracy score
over the relation categories. We report results for RoBERTa-
MNLI, SpanBERT and RoBERTa models for the three tasks.

6 Conclusion

In this work, we introduced a new dataset DAIKE
that primarily focuses on commonsense-based im-
plicit knowledge extraction from dialogues. The
dataset consists of more than 4,500 manually anno-
tated knowledge triplets from over 800 dialogues.
We also introduced dialogue-level NLI and QA
tasks, along with baselines to evaluate the in-
ference and reasoning capabilities of pretrained
transformer-based models.
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